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Sommario

Questa tesi è il risultato di un lavoro durato circa sei mesi svolto al Dipartimento di

Ingegneria dell’Informazione dell’Università di Pisa.

Lo scopo di questa tesi è di studiare algoritmi in grado di minimizzare l’interferenza

tra antenne appartenenti a sistemi LTE.

Questo è un problema “decisionale” che può essere modellato come un problema

di ottimizzazione matematica, più precisamente come un problema di programmazione

lineare intera.

In questa tesi vengono presentati algoritmi esatti e mate-euristici, il cui tempo

di esecuzione dipende dal numero di antenne, quindi viene presentata una estensiva

valutazione delle prestazioni su istanze piccole e grandi.

Tutti i risultati sono stati ottenuti utilizzando il software di ottimizzazione mate-

matica “IBM ILOG CPLEX Optimization Studio” © (CPLEX) e tutti i programmi

sono stati implementati in linguaggio C-C++.

I risultati sono promettenti, infatti viene mostrato che una buona coordinazione

delle antenne porta ad una minore interferenza nel sistema.

Abstract

This thesis is the result of a work of about six months at the Department of Computer

Science Engineering of the University of Pisa.

Scope of this thesis is to study algorithms to minimize the inter-cell interference in

LTE systems.

This is a “decision” problem that can be modelled as a mathematical optimization

problem, more precisely as an Integer Linear Program.

We present exact and math-heuristic algorithms, whose running time depends on

the number of antennas, therefore we present an extensive performance evaluation on

small and large scale instances.

All the results have been obtained using the mathematical optimization tool “IBM

ILOG CPLEX Optimization Studio”© (CPLEX) and all programs were implemented

in C-C++ language.

The results are promising, indeed we show that a good coordination of antennas

leads to smaller system interference.



Chapter 1

Introduction

Mobile communications have become an everyday commodity. In the last decades,

they have evolved from being an expensive technology for a few selected individuals

to today’s ubiquitous systems used by a majority of the world’s population. So, in

the recent years, the number of mobile users is considerably increased. The use of

smartphones, notebooks, tablets, and other mobile devices has spread significantly for

a whole series of applications: voice calls, video streaming, web browsing and many

other applications that require access to the Internet.

In this context, the broadband Internet access demand is constantly increasing with

the growth of customers’ needs and the birth of new services. So, mobile communi-

cations system needs to adapt to this dynamic context in order to support voice and

data traffic at ever-higher speed.

Mobile communication technologies are often divided into generations, with 1G

being the analog mobile radio systems of the 1980s, 2G the first digital mobile systems,

and 3G the first mobile systems handling broadband data.

In this thesis we deal with the “fourth generation” (4G), that we will call also with

the name of Long Term Evolution (LTE) or Long Term Evolution Advanced

(LTE-A). We won’t get into the details of telecommunication technologies, but we will

deal the problem of inter-cell interference in such systems.

We will see this details in the next chapters.

In this thesis, we face this problem using mathematical optimization techniques.

Operations Research is a branch of applied mathematics that deals with op-

timization problems. Thanks to the important findings in this field of the last two

decades or so, now we have we have powerful optimization tools that can be used in

many practical applications: from business processes to physical models.

Mathematical models are idealized representations expressed in terms of mathe-

matical symbols and expressions. Thus, if there are n related quantifiable decisions

to be made, they are represented as decision variables x1, x2, ..., xn whose respective

9



10 CHAPTER 1. INTRODUCTION

values are to be determined. The appropriate measure of performance (e.g., profit) is

then expressed as a mathematical function of these decision variables. We can see this

performance as a “benefit”. This function is called objective function. Any restric-

tions on the values that can be assigned to these decision variables are also expressed

mathematically, typically by means of inequalities or equations.

Such mathematical expressions for the restrictions often are called constraints.

The constants (namely, the coefficients and right-hand sides) in the constraints and

the objective function are called the parameters of the model. The mathematical

model might then say that the problem is to choose the values of the decision variables

so as to maximize the objective function, subject to the specified constraints. Such a

model, and minor variations of it, typifies the models used in OR [1].

So, we can say that Operations Research is a branch of applied maths that deals

with decisional problems, where we have to take decisions about the use of available

resources, that are limited in quantity, in order to satisfy a set of assigned conditions

(that are the constraints) and maximizing the obtainable benefit from the use of these

resources.

In this thesis, we will see how to model a LTE system, how to construct a good

model of this system and which algorithms are suitable for which scenarios.

Organization of this Thesis

Chapter 2 presents the background of mobile networks and mathematical optimization,

explaining some terms that can help the reader in the following chapters.

Chapter 3 presents the system model of LTE, showing which are the resources

and the constraints involved. Then we translate in mathematical language the system

model, and we introduce the class of optimization problem dealt with.

Chapter 4 contains the algorithms for small-scale coordination, used to coordinate

from 3 to 21 antennas, describing each algorithm.

Chapter 5 instead is about algorithms for large-scale coordination, used to coordi-

nate from 24 to 57 antennas.

Chapter 6 contains the evaluation of the performances of these algorithms. The

performances are the gap compared to the optimum and the execution time.

Chapter 7 reports conclusions of this thesis.

Appendix reports info about CPLEX and more details about results.
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Research Methodology

In table 1.1 we report goals and methods that have been used in this thesis in the

various chapters:

Table 1.1: Research methodology

Chapters Goals Methods
Background To describe the current

state of art both of LTE sys-
tems and of mathematical
optimization.

Search of related papers and
books.

System and Mathe-
matical Programming
Model

To model the LTE system
from an engineering point of
view and to construct an ef-
ficient mathematical model.

Study of system’s resources
and constraints, use of
math language and mod-
elling techniques.

Small-scale coordina-
tion algorithms

To design algorithms for
small-scale coordination.

Programming and verifying
robustness of the algorithms

Large-scale coordina-
tion algorithms

To design algorithms for
large-scale coordination.

Programming and verifying
robustness of the algorithms

Performance evalua-
tion

To evaluate the perfor-
mance of the algorithms in
various scenarios.

Use of typical performance
measures of algorithms.

As this thesis required some computer science skills, it has been necessary to learn

more in detail C, C++ and some script programming languages.

A preliminary training about CPLEX software has also been necessary.

The development of the various algorithms, that are the core part of this thesis,

has been done through the text editor Geany, using Ubuntu as OS.

A large part of this thesis has been done at the Department of Computer Science

Engineering of the University of Pisa.
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Chapter 2

Background

In this chapter we speak about LTE more in detail and start to see its related problems.

Then, we introduce mathematical optimization in its most common forms, explaining

terms that can help the reader to understand the following chapters and showing the

background about the main algorithms.

At the end of this chapter there are listed some solutions to the inter-cell interference

in LTE systems.

2.1 The LTE technology

2.1.1 Third Generation Partnership Project

The Third Generation Partnership Project (3GPP) is a collaboration between

groups of telecommunications associations, known as the Organizational Partners,

which was established in December 1998.

3GPP standards are structured as Releases, each one including hundreds of individ-

ual standards documents (e.g. UMTS was firstly designed in Release ’99 ). All these

documents are available in the 3GPP site ([2]).

3GPP has continuously developed releases to support the evolution of mobile com-

munications. All of these advances have provided a high degree of continuity in the

evolving systems, allowing existing equipment to be prepared for future features and

functionality, i.e. delivering higher data rates, quality of service and cost efficiencies.

Within this context, the Long Term Evolution (LTE) is often called “4G”, but

many also claim that LTE release 10, also referred to as LTE-Advanced, is the true 4G

evolution step, with the first release of LTE (release 8) then being labeled as 3.9G. It

must be pointed out that LTE and LTE-Advanced are the same technology, with the

“Advanced” label primarily being added to highlight the relation between LTE release

13



14 CHAPTER 2. BACKGROUND

10 (LTE-Advanced) and ITU/IMT-Advanced1, as ITU decided to apply “4G” label

also for LTE, we can refer either to 4G or to LTE [3].

As said in chapter 1, in this thesis we will use as synonyms 4G, LTE and LTE-A.

The main objectives of LTE are to minimize the system and User Equipment (UE)

complexities, allow flexible spectrum deployment in existing or new frequency spectrum

and to enable co-existence with other 3GPP Radio Access [4].

LTE offers high-quality services with very high performances in terms of:

� Data rate, the ever increasing demand for higher data rates for web browsing,

streaming and file transfer pushes the peak data rates for mobile systems from

kbit/s for 2G, to Mbit/s for 3G and getting close to Gbit/s for 4G.

� Delay, interactive services such as real-time gaming, but also web browsing and

interactive file transfer, have requirements for very low delay, making it a primary

design target.

� System capacity, from the mobile system operator’s point of view, the total

data rate that can be provided on average from each deployed base station site is

of importance. In the case of capacity shortage in a mobile system, the Quality-

of-Service (QoS) for the individual end-users may be degraded.

2.1.2 Requirements

LTE is the successor of the High Speed Packet Access (HSPA) technology. The main

requirements for LTE are the following:

High transmission rate , i.e. 300 Mbps in the downlink and 170 Mbps in the uplink
2 with 20 MHz bandwidth.

Spectrum flexibility starting with 1.4 MHz up to 20 MHz. Simpler architecture

with respect to the UMTS Terrestrial Radio Access Network (UTRAN).

Advanced support to mobility

Low latency

Quality of Service (QoS) support, using an IP-based paradigm.

Interoperability with non-3GPP systems, like WiMAX and WiFi.

In order to achieve the above targets, LTE employs:

1IMT-Advanced is a set of requirements issued by the ITY-R for 4G systems.
2Downlink refers to the transmission path from a cell site to a terminal, whereas the uplink is the

transmission path from a terminal to a cell site.
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� New medium access systems:

- Orthogonal Frequency Division Multiple Access (OFDMA) in the downlink.

- Single Carrier Frequency Division Multiple Access (SC-FDMA) in the up-

link.

� Hybrid ARQ 3 with soft combining, allowing the terminal to rapidly request re-

transmission of erroneously data. Incorrectly received data block is stored at the

receiver rather than discarded, and when the retransmitted data block is received,

the two blocks are combined.

� Multi-antenna transmission schemes:

- Spatial Multiplexing, referred as Multiple Input Multiple Output (MIMO):

the sender transmits, from different antennas, up to 4 different data streams

in the same time-frequency resources. The receiver is able to separate

streams and process the received signal.

- Transmit Diversity: the sender transmit, from different antennas, a single

data stream, thus improving the signal strength.

We will not enter details, for which we refer to 3GPP specifications [5].

2.1.3 High-level view of resource allocation in LTE

Every user has a transmission rate demand in Mbps, that is the demand necessary to

satisfy mobile services. his demand is satisfied by a base station. We can refer to it

either as “node” or eNodeB (eNB), that means “Evoleved Node B”. It is the evolution

of the element “Node B” in UMTS [6].

The antenna manages communications with the user equipments (UEs), as they

will be defines below. An eNB decides who and how much will receive data. We call

downlink the flux of data from eNB to UEs, and uplink the flux of data from UEs to

eNB.

An eNB is assigned to each user. That eNB will translate the transmission rate

demand in a (Virtual) Resource Block (RB) demand, where a RB is a virtual

division of the spectrum of bandwidth in which a eNB can transmit data. In fact, a

communication channel, or sub-carrier, is also known as RB.

Once the translation has been complete, the user receive from the assigned eNB

enough bandwidth to satisfy the transmission rate demand.

3ARQ is the acronyme of Automatic Repeat-reQuest. It’s a strategy that allows the telecommuni-
cation system to find an error, but it doesn’t solve it.
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Figure 2.1: Uplink communication: CQI

In LTE, cell transmissions are arranged in time slots called Transmission Time

Intervals (TTI), whose duration is 1 ms. The eNB has to satisfy a certain demand in

1 ms.

Each eNB has a vector of RBs available that can be allocated to the users. Each

eNB can allocate a specific RB to only one user in each TTI, but the same user can be

assigned to more than one RB in each TTI. So, algorithms work on this model knowing

that resources are limited, and every bandwidth corresponds to a certain number of

blocks that have to be allocated.

How many bits to fill each RB?

The quality of the wireless channel varies over both time and frequency.

Each RB carries a different amount of bits depending on the Channel Quality

Indicator (CQI) reported by the UE it is addressed to through the uplink communi-

cation, as we see from figure 2.1.

If a UE communicates a high CQI, then the eNB will fill RBs with many bits.

Vice-versa, if a UE has low CQI, it will receive few bits per RB, because it means that

the quality of the channel is lacking.

CQI is periodically measured by UE, with a period that is vendor specific, however

its order of magnitude is 10−3 s.

CQI can vary from 1 to 15, while the number of bits whereby the eNB fills RBs can

vary from 0 to 93 , but we won’t get into the details.
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The CQI is computed according to the measured Signal to Noise and Interfer-

ence Ratio (SINR) according to some formula that is vendor specific.

The SINR between user u and antenna e is defined as:

SINRr
u =

Pe,u
NG +

∑
x 6=e Px,u∆e,x/ne

(2.1)

where:

- Pe,u is the power allocated by node e to each RB for user u

- NG is the so-called Gaussian noise. It is added to any noise that is intrinsic to

the system and it has uniform power across bandwidth and normal distribution

over time.

- Px,u is the power perceived from u from every other antenna that is not e. It

depends on the distance and angle between them, the propagation model and the

transmitting power of x.

- ∆e,x is the number of RBs simultaneously allocated by nodes e and x. This is

also the number of interfering RBs.

- ne is the total number of RBs allocated by the node. The number of RBs that u

receives is less or equal to ne.

We have said that each user u is characterized by a data rate demand Du in Mbps

that must be satisfied.

The number of RBs required by user u from node e is given by:

RBu =
Du

f(SINRe
u)

(2.2)

where f(SINRe
u) is a non-decreasing function of SINRe

u that we won’t detail.

2.2 The inter-cell interference problem

LTE/LTE-Advanced is designed to operate with a one-cell frequency reuse, implying

that the same time–frequency resources can be used in neighbouring cells. From an

overall system-efficiency point-of-view, having access to the entire available spectrum

in each cell and operating with one-cell reuse is always beneficial. However, it may also

lead to relatively large variations in the signal-to-interference ratio, and thus also in

the achievable data rates, over the cell area with potentially only relatively low data

rates being available at the cell border.

The overall performance of a network can be measured in terms of:
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� Fairness: with this term we mean that all nodes of a network expect to gain

the bandwidth fairly and also the quality of service (QoS). QoS in the field of

telecommunications is defined as:

a set of specific requirements provided by a network to users, which are necessary

in order to achieve the required functionality of an application (service) [7]

Specific measures of fairness are available in [8].

� Cell throughput, is the amount of data which a network or entity sends or

receives data, or the amount of data processed in one determined time space. It

has basic units of measures the bits per second (bit/s or bps). The throughput

can be lower if there are losses and delays in the system. Throughput is a good

measure of the channel capacity of a communications link.

� Energy efficiency, as computer networks have become a major contributor to

electricity consumption all over the world [9], which has fostered a large amount

of research on how to make them more energy-efficient.

Energy consumption has also an other side: the battery saving at the user side,

but we won’t focus on this side.

The problem of energy consumption arises especially in the infrastructure side,

when energy consumption meets OPerating EXpenditure (OPEX).

LTE power saving schemes exploit the fact that cellular coverage is overlapping,

due to both reliability and (mostly) performance design issues, and that traffic

load is highly variable. Coverage is designed to carry peak-hour loads, which

normally occur during working hours in business areas, while nodes use very

few resources during (long) off-peak periods, e.g. at night. Therefore, some

nodes can switch off during off-peak hours, and nearby nodes will increase their

transmission power accordingly to guarantee coverage. All these mechanisms are

currently taken in account in many studies.

The power p consumed by a node is a linear function of the number of allocated

RBs to the users on each TTI, more precisely:

p = Pbase + ρ · n (2.3)

where:

– Pbase = baseline power

– n = number of allocated RBs. Of course, n < m.
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– ρ = a given constant

As in LTE the same spectrum can be re-used in neighboring cells, coordinated

scheduling is employed to improve the overall network performance [10].

The problem of Antenna Coordination is relevant on LTE systems because a good

coordination of the antennas can reflect the performances written above and lead to

higher CQI perceived from the users.

Indeed, the SINR of a user improves if fewer of the RBs that it uses are interfered

upon by its neighbors.

Thus, optimal allocation of RBs can reduce interference, hence the number of re-

quired RBs and so the total consumed power.

2.3 Mathematical Optimization

2.3.1 Overview of the Operations Research modelling approach

When dealing with an optimization problem, we typically encounter the following

phases [11]:

1. Problem identification: in this phase we identify what is our goal, which are

the available resources and which are the constraints.

2. AS-IS analysis and data collection: in this phase we study the reality as it

is and collect some data that can be used as input parameters to our problem.

This phase is crucial as the solutions we will find are solution of the model and

not necessarily of the real problem. A model will typically describe a limited

portion of reality, especially in more complex problems, but it must represent

with a reasonable accuracy every aspects involved in finding a solution to the

decisional problem.

3. Construction of the model: in this phase we translate a “word-described”

problem in a mathematical problem. The objective function/s and the constraints

are defined and mathematically modelled as equality or inequality with the proper

type (e.g. linear, quadratic, etc.). An objective function is always of type min/-

max. We define all input parameters, the kind of solution’s variable (e.g. integer,

binary, real, the

4. Determining one or more algorithms: in this phase we focus on which math

strategy is better for the particular problem and choose or create algorithms. For

example, a simple linear problem can be solved with the Simplex Algorithm if

the number of variables is not “too much”.
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5. Computational Tests: once the algorithm/s are written in some codes, we

test the effectiveness and efficiency of the algorithm/s and basically compare the

objective function’s value and the execution time with our goals. For example,

we could reach the optimum value but in times that are too big for our scopes.

Let be P our optimization problem and z(P ) the optimum solution for P . Let

be x∗ a feasible solution, that is a solution that satisfies all the constraints and

all the bounds. We can evaluate the relative error εr as:

εr =
x∗ − z(P )

z(P )
(2.4)

6. Improving the model: improvements to results can be obtained using one (or

both) of the following approaches:

� Improving the formulation of the model.

� Improving the algorithms.

Both of these approaches are object of study and operations research in general

is vividly in evolution.

This approach is very similar to the P-D-C-A (Plan-Do-Check-Act) used in man-

agement engineering.

The previous steps are not intended to be strictly sequential, because each step is

highly correlated to the previous and the following ones. We may collect data and

already have a (rough) idea about the mathematical model that will be built, and also

the formulation of the model could preliminary consider the execution time.

So, Operations Research have many application fields that range from telecommu-

nications, traffic regulation, production scheduling, organizational problems, economics

and many other, but in every problem we have limited resources and a limited time

(that may vary largely on different kinds of problems).

This aspects are crucially important when we construct a model and choose an

algorithm. Many models are untreatable at the state of the art of nowadays.

The “quality” of a model is given balancing two opposing necessities:

1. To keep every element necessary to a complete and correct description of out

phenomenon

2. To have a “sufficiently easy” model to deal with so we can obtain one ore more

solutions in reasonable times.

Both in modelling and in choosing algorithm phase we will have to keep this in

mind.



2.3. MATHEMATICAL OPTIMIZATION 21

2.3.2 Mathematical Problems

Operations Research deals with many types of mathematical problems. The most

frequent types of problems dealt with in practical applications are:

Linear Programming (LP): this type of problem has a linear max objective func-

tion, linear constraints and real variables. A general LP has the following form:

max cTx

s.t.

Ax ≤ b

x ∈ Rn

This form is also called as standard form. Of course, a problem can also have a

min objective function, with other constraints. We will see this in section 2.5.1.

Clearly, cTx is the objective function we want to minimize/maximize, in particular

cT , c ∈ Rn is the transposed vector of the coefficient of the variables in the

objective function.

A is a m×n such that A ∈ Rm×n that represents the coefficients of the variables

in the m constraints. So, element aij ∈ A represent the coefficient of the j-th

variable in i-th constraint.

Integer Linear Programming (ILP): this type of problem is one of the most im-

portant problem for a managerial engineering, because with integer variables we

can often model reality and many problems of scheduling, production planning

and so on. It has the same form of a LP, but has x ∈ Zn. Many ILPs has x ∈ Zn+

Mixed-Integer Linear Programming (MILP): another important type of problem

is the family of MILPs, that are problems with two different sets of variables, one

integer and the other real. A general MILP has the following form:

max cTx+ hTy

s.t.

Ax+Gy ≤ b

x ∈ Rn

y ∈ Zp

with c ∈ Rn, h ∈ Zp, A ∈ Rm×n, G ∈ Zm×p.
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Non-Linear Programming : in this family of problems, each element has a non-

linear objective function. We can find types of problems such as:

- Quadratic Problem (QP): this class of problem has a quadratic objective

function and linear constraint. A general QP has the following form:

max
1

2
xTQx+ cTx

s.t.

Ax+Gy ≤ b

x ∈ Rn

with Q ∈ Rn×n is symmetric.

- Quadratically Constrained Quadratic Problem (QCQP): this class of prob-

lem is a generalization of QP, because it includes quadratic constraints. A

general QCQP has the following form:

max
1

2
xTQx+ cTx

s.t.
1

2
xTPx+ qTx+ r ≤ 0

x ∈ Rn

with P ∈ Rn×n, q ∈ Rn and r ∈ R.

Of course, there are many sub-class of problems and others. For example, we may

have a QP with x ∈ Z, or a MILP with a Ax+Gy ≥ b constraint.

2.4 LP and ILP Algorithms

In this section we present a typical classification of LP and ILP algorithms.

Different algorithms are studied for different problems for many reasons. Of course,

it is possible that one algorithm is feasible to a certain type of algorithm and not for

another one due to mathematical reasons, but also because of complexity.

We will see how algorithms can be divided, studied and developed for mathematical

optimization purpose.
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Figure 2.2: Dual conversion table

2.4.1 Duality theory

One of the most important discoveries in the early development of linear programming

was the concept of duality and its many important ramifications. This discovery re-

vealed that every linear programming problem ( we call it as primal, with the meaning

of “original”) has associated with it another linear programming problem called the

dual.

Let’s call P the primal problem in its standard form, using the same equations of

a LP, as defined in the previous section.

Then its dual problem D is defined as:

min bTy

s.t.

Ay ≥ c

y ≥ 0

This two forms of the same problem are so closely related that the optimal solution

of one form automatically provides the optimal solution to the other.

The fundamental rules to construct the dual form starting from a minimization

primal problem can be summarize in figure 2.2, that provides a fast “conversion table”

(it can be used in the two ways):

We refer to any book of Operations Research for further details.
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2.4.2 Complexity Theory

Computational Complexity Theory is a branch of theoretical computer science

that provides a method of quantifying problem difficulty in absolute sense, so that it’s

possible to compare the relative difficulty of two different problems or algorithms.

The elements of this theory are basically:

� Dimension of the instance of a problem: formally is the number of bits

necessary to codify the instance. In practical, it is how much complex are the

parameters we are dealing with in the particular problem. For example, the

number of variables of a LP, or the number of constraints.

� Algorithm complexity: we know that a (deterministic) algorithm is defined a

set of operations that must be executed to solve a problem. We can measure the

execution time of an algorithm as the number of elementary operations executed

by the algorithm. In general, we will consider always the worst case and we

will say that an algorithm A has computational complexity O(f(n)) if exists a

constant c > 0 and a index n̄ > 0 such that the execution time of A to solve an

instance of dimension n is ≥ c · f(n) for each n > n̄.

An algorithm has polynomial complexity if its complexity is O(nk) for a certain

k ∈ N. We will call efficient such algorithms.

Note that typically 1 elementary operation take 1 ns = 10−9 s. [12].

� P class: is a class of decisional problem that is solvable by a deterministic algo-

rithm of polynomial complexity. Some examples are the minimum path, solvable

by Dijkstra algorithm, or generalized linear assignment, or any other LP.

� NP class: is the class of decisional problems that are solvable by a non-deterministic

polynomial algorithm. A non-deterministic polynomial algorithm is an algorithm

that solves a decisional problem following 2 steps:

1. Hypothesize a certain solution to the particular instance and that there is

the possibility to verify this hypothesis.

2. Check the hypothesis.

We mention that P ⊆ NP , but no one still knows if P = NP

When we can say if a problem P1 is more difficult than a problem P2?

A decisional problem P1 is polynomially reducible to another problem P2 (we will

write P1 ∝ P2) if, for each instance I1 of P1 we can obtain in a polynomial time an

instance I2 of P2 such that from the optimal solution of I2 we obtain in a polynomial

time the optimal solution of I1.
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Figure 2.3: Graphical representation of a 2 -dimensional LP

If this happens, than P2 is at least as difficult as P1.

Of course, if P1 ∝ P2 and P2 ∈ P , then P1 ∈ P .

The most difficult problems are the so-called NP-complete problems.

A problem P is NP-complete if:

1. P ∈ NP

2. P1 ∝ P for each P1 ∈ NP

So, a NP-complete problem is at least as difficult as any other NP problem.

Summing up, we say that problems of class P are easy, while problems of NP-

complete are difficult.

More details are available in [13].

2.4.3 Simplex algorithm

The Simplex method has been developed by George Dantzig in 1947.

From theory we know that if exists the optimal solution of a LP, then it is a vertex 4

of the feasible region. The feasible region is a part of the n-dimensional space (where

n is the number of variables) such that any points belonging to this part is a feasible

solution to the problem (that means it satisfies all constraints).

In fig 2.3 we can see a graphical representation of a LP.

It has proved that the Simplex method is a remarkably efficient method that is used

routinely to solve huge problems on today’s computers. The method relies on geometric

concepts.

4A vertex is the point in common of two incident lines
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The points of intersection are the corner-point solutions (CPS) of the problem.

Suppose our LP has a matrix A ∈ Rm× n, we call basis any indexes subset B such

that the sub-matrix AB has rank n. We can demonstrate that if a point x̄ is a vertex,

then it exists at least a basis B such that x̄ = A−1B bB, that is the associated basis.

Vice-versa, given a certain basis we can associate to it a vertex using the same

formula as above.

We denote with I(x̄) the set of indexes of A that x̄ satisfies with equality constraints,

then |I(x̄)| ≥ n; every subset with cardinality n will be a basis associated to x̄.

we can have two situations:

� |I(x̄)| = n, then the vertex is called not degenerate

� |I(x̄)| > n, then the vertex is called degenerate and so there are more basis

associated to it.

Supposing to start the algorithm with a vertex x̄ and a basis associated to it, we

iteratively follow these steps:

1. Check of optimality of the current vertex. This is done through the dual of the

problem. We can stop here or we find a growth direction ξ. If the vertex is not

degenerate, ξ is feasible, so we can improve our solution without getting out the

feasible region. Vice-versa, the direction is not feasible.

2. Calculate the maximum shift in direction ξ. This is 0 if ξ is degenerate, ∞ if

the problem is not limited or it can be finite and positive, so we find a CPS that

improves the solution.

3. Update the basis with an incoming index k and a outcoming index h. This

corresponds to a shift of indexes.

Details about this method are available in any OR’s book.
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Let’s see now a numerical example.

Suppose we want to maximize

maxZ = 3x1 + 5x2 (2.5)

s.t.

x1 ≤ 4 (2.6)

22 ≤ 12 (2.7)

3x1 + 22 ≤ 18 (2.8)

x ∈ R2
+ (2.9)

Constraints (2.6), (2.7) and (2.8) are represented by the lines in fig 2.3.

The five that lie on the corners of the feasible region (0, 0), (0, 6), (2, 6), (4, 3),

and (4, 0) are the corner-point feasible solutions (CPF solutions). The other three

(0, 9), (4, 6) and (6, 0) are called corner-point infeasible solutions.

In this example, each corner-point solution lies at the intersection of two constraint

boundaries, while if we have n decision variables, each CPS lies at the intersection of

n constraint boundaries in a n-dimensional space.

For any linear programming problem with n decision variables, two CPF solutions

are adjacent to each other if they share n−1 constraint boundaries. The two adjacent

CPF solutions are connected by a line segment that lies on these same shared constraint

boundaries. Such a line segment is referred to as an edge of the feasible region.

We can easily see in fig 2.3 which are the adjacent CPF solutions.

One reason for our interest in adjacent CPF solutions is the following general prop-

erty about such solutions, which provides a very useful way of checking whether a CPF

solution is an optimal solution.

Optimality test : Consider any linear programming problem that possesses at

least one optimal solution. If a CPF solution has no adjacent CPF solutions that are

better (as measured by Z), then it must be an optimal solution.

Thus, for the example, (2, 6) must be optimal simply because its Z = 36 is larger

than Z = 30 for (0, 6) and Z = 27 for (4, 3). This optimality test is the one used by

the simplex method for determining when an optimal solution has been reached.

2.4.4 ILP algorithms

Unlike linear programming problems, integer programming problems are very difficult

to solve. In fact, no efficient general algorithm is known for their solution.

Optimum algorithms for ILP are:
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Cutting planes , that is: given an ILP = max{cTx|Ax ≤ b, x ∈ Zn} and its con-

tinuous relaxation LP = max{cTx|Ax ≤ b, x ∈ Zn}, a generic cutting plane

algorithm does:

1. Solve the LP . Let be x∗ an optimal solution.

2. If x∗ is integer stop; x∗ is an optimal solution to ILP .

3. If not, add a linear inequality constraint to LP that all integer solutions in

ILP satisfy, but x∗ does not, the go to # 2.

Branch & Bound: this method is also called “total enumeration” because the idea

is to explore the total enumeration tree without exploring all the possible leaves.

The “Branch” and “Bound” techniques let us do a so-called implicit visit.

� For the “Bound” techniques it’s necessary to know the upper and lower

evaluations of the optimal solution of an ILP. The most common techniques

are:

- Elimination of a constraint.

- Continuous relaxation.

- Sum of constraints.

- Use of a feasible solution x̃.

- Restriction (e.g. xi = 0).

If we are dealing of a maximization problem, these techniques give an upper

bound, while if the problem is of minimization, they give a lower bound.

� For the “Branch”) techniques (that is the implicit visit), we describe the

two most common rules. Let v(P ) be the upper bound of our problem, and

VI(P ) and VS(P ) be the lower and upper bounds of the primal problem in its

standard form. Let be Pi the sub-problems at i-th level in the enumeration

tree. Then:

- If VI(Pi) ≥ VS(P ) then I do an implicit visit. Indeed, in the sub-tree of

Pi there aren’t better solutions than the current one.

- If the optimum of the continuous relaxation of Pi is feasible then I do

an implicit visit. I can update VS(P ) with VI(P ).

More details are available in any book dealing Operations Research, we cite [14].

Dynamic programming , it solves ILPs sequentially basing on Bellman’s Optimal-

ity Principle:
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Regardless of the decisions taken to enter a particular state in a particular

stage, the remaining decisions made for leaving that stage must constitute an

optimal policy

General guidelines for constructing dynamic programming algorithms are:

1. View the choice of a feasible solution as a sequence of decisions occurring

in stages, and so that the total cost is the sum of the costs of individual

decisions.

2. Define the state as a summary of all relevant past decisions.

3. Determine which state transitions are possible. Let the cost of each state

transition be the cost of the corresponding decision.

4. Define the objective function and write a recursion on the optimal cost from

the origin state to a destination state.

Heuristic algorithms for ILP (and in general) are every algorithm able to give a

feasible solutions typically in polynomial times. Heuristic algorithms can be classified

in:

- Constructive: they start from an empty solution and iteratively add elements to

the partial solution until some criteria are achieved. These criteria typically are

expressed in terms of gap compared to the optimal solutions and/or time limits.

These algorithms are typically greedy, based on implicit enumeration.

- Local search: they start from an initial feasible solution and try to modify it

iteratively slightly modifying it. They stop when they reach a local optimum

from where is no more possible to obtain improvements.

- Math-heuristics : they rely on math techniques and can be seen as an evolution

of local search heuristics. They try to avoid local optima.

The quality of a heuristic solution typically improves from constructive heuristics

to math-heuristics.

About relaxations The idea of the concept of relaxation is to take the original

problem and making it easier to solve by modifying some constraints and eventually

the objective function.

From theory we know that if we have an IP = max{cTx | x ∈ X ⊂ Zn+} then we can

find a lower bound z and an upper bound z̄ respectively finding any feasible solutions

x∗ and solving the relaxation associated to the starting IP.

So the question is: which kind of relaxation should I use?

The most used relaxations are:
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� Continuous relaxation (CR): this is simply the LP associated to the ILP in

question, simply modifying the integrality constraint on the variables and setting

the variables belonging to R.

� Combinatorial relaxation: it is a easier combinatorial optimization problem. Nice

combinatorial relaxations can be solved in polynomial time. Their structure varies

on the particular kind of the original problem.

� Relaxation by elimination: it is simply based on deleting one or more constraint

of the original problem in order to make it easier to be solved.

� Lagrangian relaxation: Let P be an ILP of this form:

max cTx (2.10)

s.t.

Ax ≤ b (2.11)

Bx ≤ d (2.12)

x ∈ Zn (2.13)

where (2.11) are “hard constraints”, such that without them P would be easy

to solve. Instead of deleting these constraints, the lagrangian relaxation penal-

izes the violation of these constraints adding them in objective function with an

opportune coefficient.

We define the lagrangian relaxation RLλ of P , as the following ILP:

max cTx+ λT (b− Ax) (2.14)

s.t.

Bx ≤ d (2.15)

x ∈ Zn (2.16)

where λ ≥ 0 is the so-called vector of Lagrange’s multipliers.

Theorem of weak duality says that for every λ ≥ 0, the optimum x∗λ of RLλ is

an upper bound of P . In particular, if x∗λ is feasible for P and it results that

λT (b− Ax) = 0 (slack variables), then x∗λ is optimal also for P .

How to choose the appropriate λ? Let be v(RLλ) the value of the objective

function of (1.11).
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We know that all λ must be ≥ 0, but we would like to minimize the optimal

solution of RLλ so that the gap with the optimum of P is reduced. So, we have

to solve the so-called lagrangian dual D of P :

min v(RLλ) (2.17)

s.t.

λ ≥ 0 (2.18)

To minimize such non-differentiable convex function, we could use the subgradi-

ent’s method, that is a generalization of the mathematical concept of gradient.

More details about this method are available in many books that deal with Op-

erations Research.

� Surrogate relaxation: a subset of constraints is substituted by one constraint that

is a linear combination of those constraints. A multiplier vector u is also used.

So we could reduce the number of the rows of the constraint matrix A in order

to get a constraint of this form:

uT (Ax) ≤ uT b (2.19)

2.5 State of art

In LTE systems there aren’t standards about coordination schemes, so that every

operators can decide which algorithm has to be used. Practically, operators apply the

First-fit algorithm or a Random approach. The first algorithm is deterministic and

consists in allocating the first D blocks of the spectrum, where D is the block demand.

The other is non-deterministic, and consists in a random allocation of D blocks. We

will see this algorithms more in detail in chapter 4.

[15] reports a list of solutions that has been proposed by several authors. About

this paper we report in particular:

� A large system analysis based on random matrix theory used for small-scale

coordination.

� A study investigates the interference exposure of the macrocell tier on the small

cells , showing that the interference is not maximised at the macrocell edge.

� A framework based on the Belief Propagation algorithm is developed to solve

the inter-cell interference problem for heterogeneous networks. A factor graph
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is designed to represent the inter-cell interference probabilistic relationship with

various communication resources Based on a set of prior distributions, it calcu-

lates the posterior distributions of the scheduling variables algorithm achieves a

good result in typically a couple of iterations.

. We refer to the paper for more details.

[16] shows a study on heterogeneous networks in LTE-A systems based on sharing

spectrum and using game theory. It models LTE-A systems as a hierarchical structure

with a macronode as “leader” and micronode as “followers”. In this structure the

authors apply a Stackelberg game5 and show that this approach leads to a better

spectrum sharing among nodes.

Another study on heterogeneous networks in LTE-A systems has been done by [17],

which advocates a reduction of inter-cell interference with the use of Almost Blank

Sub Frame (ABSF) technique. This technique consists of a sub frame in which the

interferer tier is not allowed to transmit data. The basic concept of ABSF is to mute

some sub frames that causes interference and uses the RB in cell of lower level. The

study is oriented in maximizing the throughput of the cells and shows that this goal is

achieved.

Heterogeneous networks have been studied also in [18]. In this case there are pro-

posed algorithms that deal with the problem of selecting which cells transmit in which

RBs so as to mitigate the interference suffered by UEs. A layered approach is used

to split the problem into small-scale coordination and large-scale. Small-scale coor-

dination (SSC) arbitrates a small cluster of three cells, by partitioning the frame in

interference logical subbands (ILSs). Each ILS defines the subset of cells that can trans-

mit in the same RBs. SSC has been used as a basis for large-scale coordination (LSC),

which was accomplished by defining the position of the ILSs in the frame, so as to

minimize the interference among neighboring clusters. The authors modeled both SSC

and LSC as optimization problems, and showed them to be too complex to be solved

at optimality. The paper advocates fast heuristics that can be run at TTI timescale.

5In game theory, a Stackelberg game is a game in which the leader does the first move and the
followers response according to the leader’s move.



Chapter 3

System and Mathematical

Programming Model

3.1 System model

A radio accesso network (RAN) is a part of a mobile telecommunication system

that interfaces individual devices with other parts of a network through some radio

access technologies.

The RAN of a LTE system is called Evolved Universal Terrestrial Radio Acces

Network (EUTRAN) and can be considered an evolution of the UMTS and HSD-

PA/HSUPA technologies specified in 3GPP release 5. More details are available at

[19].

However, we will refer to EUTRAN with the term RAN.

The RAN of a LTE system consists of three main entities:

� Antennas

� Communication channels (i.e., OFDMA sub-carriers as previously seen).

� Users: We can refer to a user also as User Equipment (UE), because in fact the

antenna communicates with the equipment of the users (e.g. Smartphone). WIth

UE we mean any device used directly by an end-user to communicate, so UEs

can be smartphones, notebooks, tablets and other mobile devices, as presented

in Chapter 1.

A graphical representation of LTE System is given in fig 3.1.

We consider a large-scale multi-cell LTE network.

The network is logically divided into areas (called “hexagons”), each one under the

coverage of a macro node, i.e., an antenna with high radiation capability. In fig 3.2,

33
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Figure 3.1: LTE System

we can see how a physical area of a territory (described from two x and y axis) can be

tasselled using hexagons.

Each hexagon represents an area covered by three overlapping cells, and the little

square set at the centre of each triad of hexagons represent the point in which are these

cells.

We can assume that antennas are anisotropic, disposed and radiating at 120◦ from

each other.

Each cluster can be identified by a cluster ID that is the number we can see in the

square of fig 3.2.

The positioning of the 3 macro nodes is shown in fig 3.3.

We can give a cell ID to each antenna in order to identify each of them. In particular,

if we give label 0 to the 180◦ antenna, label 1 to the 300◦ one and label 2 to the 60◦,

we can say that:

CellID = ClusterID · 3 + i (3.1)

where i is the label of the particular positioning.

In figure 3.4 we have a graphical representation of the inter-cell interference accord-

ing to our system model.

A hexagon can also accommodate micronodes, usually located in hot-spots or at

an hexagon edge (see fig 3.5).
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Figure 3.2: Hexagons in LTE

Figure 3.3: Positioning of the 3 macro nodes of a cluster



36 CHAPTER 3. SYSTEM AND MATHEMATICAL PROGRAMMING MODEL

Figure 3.4: The inter-cell interference problem

Figure 3.5: Location of micro nodes

The utility of micro nodes is to provide additional localized capacity at a lower

power cost, for example in particular areas where there are lots of offices, shops etc.

About RBs demand

We assume that the operator possesses the following information: a per-hexagon his-

torical load curve, detailing (at least) the overall bitrate requested in a hexagon over

time in a sample day. There may be several such curves, of course, e.g., one describing

working days, one for holidays, etc.

Moreover, the operator possesses a similar curve (or set thereof) detailing the num-

ber of users per cell over time, so that the average per-user bitrate can be inferred.

Note that these curves do not contain information about the position of single users

within a hexagon. The time resolution at which these curves are plotted is that of a

sufficiently large interval (e.g., 15 minutes), called snapshot henceforth. We only con-

sider the downlink direction, which is the most critical from the point of view of both

carried load and infrastructure power consumption.

To infer a per-user requested data rate from the load curves we focus on a single

snap- shot and a single hexagon.

Let L and H be the load and number of users for the hexagon in a given snapshot.
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The average demand per user u in the given hexagon-snapshot is Du = L/H. Also,

for each pair of node-user (e, u) ∈ E × U , we know the power Pe,u allocated by node e

to each RB for user u.

Note that, according to equation (2.2), RBu may not be integer, but we consider

it as an average value and the time span of a snapshot id large enough to allow a fluid

approximation.

It’s clear that the SINR of a user improves if fewer of the RBs that it uses are

interfered upon by its neighbours. This means that antennas should not communicate

using the same frequency, or at least should not do that if the interference between a

pair is high. We will model this in the next section.

3.2 Mathematical programming model

In this section we’ll see how we can model the problem of minimization of interference

among antennas in LTE networks in mathematical terms.

We take the following parameters as input to the problem:

- N : number of antennas that have to be coordinated.

- m : maximum number of virtual blocks that can be used by every antenna. We

refer to a virtual partition of bandwidth in which antennas transmit.

- U : set of users that have a demand to be satisfied.

Note that we want to maximize the signal to interference and noise ratio SINRe
u

for every pair (e, u), e ∈ N u ∈ U of antenna and user.

As we can see from equation (2.1), we have to minimize the overall interfer-

ence among antennas. This because the lower the number of blocks simultaneously

allocated, the higher the SINR.

In the following section we’ll see two exact models that allow us to find the optimal

solution, and we will evaluate their characteristics.

We remind that in Integer Programming the choice of a formulation is crucial, and

a bad formulation could affect our ability to solve the problem.

For our purpose, we use a pattern-based model to solve the problem of antenna

coordination.

For each (i, j) ∈ N ×N we have a coefficient αij denoting the interference from the

two antennas. We can populate a so-called interference matrix, where each diagonal

element αii = 0, as shown in the following matrix .
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α =


0 αij ... α1N

αji 0 ... ...

... ... 0 ...

αN1 ... ... 0


Note that αij 6= αji, because the radiation pattern of a cell may be isotropic.

The interference depends on the antenna pair but not on the blocks, so it isn’t

important to know which blocks are shared by a certain pair of antennas.

For each i ∈ N we have a weight wi denoting the importance of the i-th antenna

and a block demand Ai.

The block demand is a translation of user’s demand that is in Mbps, as seen in

chapter 2.

Let us define a pattern p as a vector [pi]i∈N of binary elements pi ∈ {0, 1} where:

pi =

1 if antenna i-th is active,

0 otherwise.
(3.2)

Of course, we could have “tripper patterns” p = ei having only a 1 in position i;

these correspond to blocks uniquely assigned to antenna i, and have cost cp = 0.

The cost of a generic p-th pattern is:

cp =
∑
i∈N

∑
j∈N

wiαijpipj (3.3)

This formulation let the cost be 0 if a certain block is used by 1 antenna at maxi-

mum.

Let P be the set of all possible patterns. The cardinality of P is 2|N |.

The formulation of the problem is therefore:

min
∑
p∈P

cpxp (3.4)

s.t. ∑
p∈P

pixp = Ai i ∈ N (3.5)∑
p∈P

xp ≤ m (3.6)

xp ∈ N p ∈ P (3.7)

where:

- Expression (3.3) states that we have to minimize the sum of the costs associated

with using xi times the pattern pi.
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- Equation(3.4) states that we have to satisfy the blocks’ demand of every antenna.

- Inequality (3.5) states that the total blocks we have at disposition is m.

- Expression (3.6) states that the variable xp can have value in the range of integer

positive number, while p must belong to P , that is the set of all possible patterns.

Scope of this model, is to minimize the cost of a certain set of coordinated cells.
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Chapter 4

Algorithms for small-scale

coordination

In this chapter we present some algorithms used for small-scale coordination. In fact,

with these algorithms we are able to efficiently coordinate from 3 to 21 antennas.

We will discuss the performance of these algorithms and their limits in chapter 6.

4.1 Bruteforce

In this section we present the algorithm Bruteforce. This algorithm has been modified

from the algorithm of Rendtl et al [20], firstly developed to solve Max-cut problem.

4.1.1 Columns Generation

From theory we know that when the number of variables is too “large” to deal with

explicitly, it’s not a good idea to deal with all the variables at the same time, because

the solver would have too many variables.

In our case, given the number N of antennas, we know that the variables we deal

with are 2N , that is exponential.

With this algorithm we want to use the mathematical technique of Columns Gen-

eration . This process is also known as variable pricing.

The idea of this technique is very simple: instead of solving the problem with all its

possible variables, we consider only a subset of the variables and populate a so-called

reduced master problem. Then we dynamically add the columns (variables) that help us

to find a better solution. We can recognize these columns because they have a reduced

negative cost.

This approach follows the scheme reported in figure 4.1. The process can be also

summarized with these sequential points:

41
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1. Initialize the reduce master problem (RMP) with a “small” subset of variables.

Let’s call n the size of this subset, our coordination problem will have the same

structure of (3.4)(3.5)(3.6), but with p ∈ P̃ , where |P | = n. That means we

give a small subset of variables to RMP. We apply an additional change to the

problem changing constraint (3.5) to:∑
p∈P

pixp ≥ Ai i ∈ N (4.1)

This because we populate the problem with a so-smaller set of variables (especially

with the growing of N). This will make the problem easier to be solved than the

original one, because we solve a set covering inequality instead of a set partitioning

inequality1, but the ≥ condition will make CPLEX tending to find the solution

at the minimum cost. CPLEX could exceed Ai only when there aren’t sufficient

patterns in the problem. The last pattern of P̃ assure us that a feasible solution

is always found, even if we pay a great cost in terms of interference.

2. Solve LP associated to the RMP and obtain primal solution x∗. Let’s call λi the

i-th dual variables associated with the i-th antenna’s demand constraint (4.2)

and µ∗ the dual variable associated with the constraint on the max number of

blocks (4.3).

3. If x∗ is optimal for the original LP, i.e λi i = 1, ..., N and µ∗ are dual feasible,

then stop. Otherwise, find some columns with negative reduced costs. These

columns are those corresponding to violated dual constraints. So, we’ll have to

find those columns that violate dual constraints. This problem takes the name

of “Constraints separation problem”.

4. Add columns found at step 3 and go to # 2.

Let’s see these how to do these steps in practical.

First, we write the dual problem associated to our primal one.

1This because set partitioning has feasibility with NP − complete complexity, while set covering
has an “easy” feasibility.
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Figure 4.1: Columns generation scheme
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Recalling equations (3.4) (4.1) (3.6) we can say that the dual problem associated

with the primal one is:

max
∑
i∈N

λiAi + µm (4.2)

s.t. ∑
i∈N

piλi + µ ≤ Cp p ∈ P (4.3)

λi ≥ 0 i ∈ N (4.4)

µ ≤ 0 (4.5)

4.1.2 Steps of the algorithm

In Bruteforce algorithm, step 1 means: initialize our RMP with a reduced set of vari-

ables. The size of this set is N + 1. In particular, we give to the RMP the following

pattern matrix:

P̃ =



1 0 0 ... 0

0 1 0 ...
...

0 0 1 ...
...

0 0 0 ... 1

1 1 1 ... 1


that is a (N + 1)×N matrix.

Step 2 simply recall CPLEX to solve the continuous relaxation, and store the N +1

dual solutions associated.

Step 3 is the pricing phase. We check if there is some columns that violate constraint

(4.7). In particular, we want to find a certain number K of columns to add. This K

can be expressed as an absolute value (100, 200, 500, 1000, . . . ) or as a fraction of 2N

(1�, 2�, 5�, . . . ). Appendix B reports the tuning of this parameter. In order to find

those columns can write that constraint and do some maths:

So let’s focus on equation (4.3).

We can write it as:

∑
i∈N

piλi − Cp ≤ −µ p ∈ P

and knowing that Cp = pTωαp we can say:

λTp− pTωαp ≤ −µ (4.6)
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The constraint separation problem asks: does it exist a p ∈ P such that:

λTp− pTωαp > −µ

that is:

pTωαp− λTp < µ p ∈ P (4.7)

So, in order to generate columns, we have to find the following unconstrained opti-

mization problem:

min pTαp− λTp (4.8)

where

αij = ωi · αij (4.9)

for every αij ∈ α.

If we don’t find any other column at negative reduced cost, we exit the loop and

launch the Branch & Bound algorithm to find the integer solution.

If a certain numbers of columns has been found, step 4 is adding those columns

to the RMP and go back to step 2. As we are dealing with a primal problem of

minimization, this column generation will give us an upper-bound (UB), so that we’ll

have UB ≥ OPT , where OPT is the optimum value of the problem.

4.1.3 Pricing problem

The problem of finding a good set of columns is to find those solutions that minimize

the objective function, because the constraint that we want to violate is “<”. We can’t

solve the constraint separation problem in polynomial-time, as it is NP-hard

This problem is also called Unconstraied Boolean Quadratic Problem (UBQP).

Indeed, it has no constraints, the variables are binaries (so they can be seen as

boolean variables) and the objective function is quadratic. This is the pricing problem

of determining the columns at reduced negative cost. We have to separate the dual

problem presented in 4.1.1 .

The pricing problem is to find columns with reduced negative cost. Those columns

will violate constraint (4.7). A violated constraint corresponds to a primal variable.

We separate the dual form in the following way: given a x∗ that corresponds to the

optimal solution of the continuous relaxation of my problem, we find an hyperplane

that cut the solution from the remaining part of the polyhedron.



46 CHAPTER 4. ALGORITHMS FOR SMALL-SCALE COORDINATION

Figure 4.2: Binary representation of numbers in a hypercube of dimension 3

We know that, for what has been said in section 3.2, αij 6= αji, and ωi 6= ωj for

every i, j ∈ N . This means that in order to have Cij = Cji we must first symmetrize

α matrix.

The symmetrization of α can be simply done in the following way:

1. Start from i = 1.

2. For each j = i, ..., N calculate a temporary arch cost Tij =
αij + αji

2

3. For each j = i, ..., N set αij = Tij

4. For each j = i, ..., N set αji = Tij

5. Increase i by 1 and go to # 2.

4.1.4 Exploring the N -dimensional hypercube

We know that every feasible solution of the UBQP can be found at the vertices of a

N -dimensional hypercube, as we don’t have any constraint. Bruteforce enumerates all

the possible cuts of a complete graph and calculates their costs using a particular trick.

Exploiting the property of Hamming’s Distance, we are able to enumerate all the

possible patterns (that are columns) in a polynomial time.

Hamming’s distance is calculated between two patterns of binary numbers and it’s

the number of positions in which the two patterns has different values. For example,

pattern “1001” and “0101” has Hamming’s distance = 2. Indeed, starting to count

from right to left, those patterns have equal position 1 and position 2 but have different

values in position 3 and 4.

We can see the Hamming’s distance even using a N -dimensional hypercube (fig 4.3)

, where N is the dimension of the patterns.



4.1. BRUTEFORCE 47

The enumeration of all the patterns can be done thanks to a particular function

called Graycode developed by Giovanni Rinaldi2. The code allows to explore the hy-

percube passing through a hypercube’s vertex exactly one time, starting from pattern

[00 . . . 0] to pattern [11 . . . 1]. This is done changing 1 bit per time, indeed Graycode

returns an integer p that is the power of 2 that we have to add or to subtract to the

previous number n in order to be the next bin-adjacent number. An integer s that can

be −1 or 1 tells us if we have to add or subtract 2p.

So, calling n′ the next bin-adjacent number of n (that is the next vertex of a

hypercube), we have:

n′ =

n+ 2p if s = 1

n− 2p if s = -1

The complexity of this algorithm is O(N).

Let be K the number of good columns that we want.

For every string of binary numbers that Graycode provides us, we can rapidly

calculate the associated cut’s cost Ccut and store the best K patterns in the following

way:

1. Let be p the last bit changed from Graycode, Ω the cost of the last cut and Ωmin

the minimum cost of all the cuts explored. When the algorithm start every bit

of the initial pattern is setted to 0 and the Ωmin = Ω = 0.

2. Let be t the t-th position of the current pattern we’re examining. For every

pattern we find, t will vary on 1, ..., N .

3. When t < p, check if both p and t are setted to 1.

- If it is, add to Ω the quantity 2 · Cpt. Indeed, it means that in the previous

cut p was setted to 0 and its cost with t wasn’t included in Ω.

- If p = 0 and t = 1, remove to Ω the quantity 2 · Cpt. Indeed it means that

in the previous cut p was setted to 1 and its cost with t was included in Ω.

- Otherwise, do nothing. It means that p = 1 and t = 0 or p = 0 and t = 0,

but in every case the cost Cpt must not be included in Ω because node t is

deactivated.

4. When t = p, check if p = 1.

- If it is, add to to Ω the quantity Cpp = −λp. Indeed, it means that in the

previous cut p was setted to 0 and its loop cost wasn’t included in Ω.

2Research Director at the Institute of System Analysis and Computer Science “Antonio Ruberti”.
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Figure 4.3: Graphical representation of a max heap tree

- If p = 0, remove to to Ω the quantity Cpp = −λp. Indeed, it means that in

the previous cut p was setted to 1 and its loop cost was included in Ω.

5. When p < t ≤ N , do the same check seen in # 3.

4.1.5 Storing K patterns

In order to manage all the patterns we can use a vector V structured as a particular

max heap to store the best K patterns that we will add to the RMP .

A max heap tree is a binary tree in which:

- The content of a parent node is more than or equal to the content of each of its

children.

- Each level is filled from left to right. Level i+ 1 cannot be populated unless level

i is completely full.

A graphical example of a max heap tree is given by figure 4.3.

In fact, our particular max heap stores the patterns that have the minimum cut’s

costs.

Let’s see how can we do this.

Let be k a counter that indicates how many patterns have been stored in the heap.

Of course, the maximum size of the heap is setted to K.
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The Bruteforce algorithm goes on after a pattern has been found in the following

way:

1. Let set k = 0 and let’s start with empty V .

2. If k < K, add the current pattern to the V . Increase k by 1.

3. If k = K, create the heap on the V . Increase k by 1.

4. If k > K, check:

- If Ω 6= 0 ∧ Ω < Ωmin then add the current pattern at the end of V , then

swap the top’s root with this leaf and set Ωmin = Ω. Then reheapify and

delete the last element of V (that is the rightmost leaf at the lowest level).

Note that the condition Ω 6= 0 prevents the adding of pattern 00 . . . 0. that

actually doesn’t help our coordination problem as it corresponds to have

every antenna turned off.

- Otherwise do nothing

At this time it’s not necessary to increase k by 1.

Note about heap

A simple way to obtain the n smallest elements out of a set of n would be to sort the

n elements of that set in increasing order and then select the k smallest. This has a

computational cost Cminheap equal to:

Cminheap = O(n · log(n) + k) (4.10)

where:

� O(log(n)) is the cost of heapification of n elements.

� O(k) is the cost of selecting the first k elements

A slightly more efficient way to achieve the same goal is to use a maxheap. The

maxheap will initially be filled with the first k elements of the set of n. Starting from

the k + 1 th element ej, ej replaces the maxheap root node if it is smaller. This may

require a reheapification, whose cost is however O(log(k)), since the maxheap includes

k elements. This way, the computational complexity Cmaxheap of getting the same result

is:

Cmaxheap = O(n · log(k) + k)) (4.11)

As k can be expected to be considerably smaller than n, this saves some computa-

tions.
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4.1.6 Pseudocode for Bruteforce

The pseudo-code for Bruteforce can be finally summarized as follows:

/****** main.cpp ***** */

read.data();

crea.master ();

while(get_new_cols) do{

bruteforce ();

for(i=0;i<K;i++{

if(new_col[i] < mu*){

addcol.master ()

solve.master () // with CR

counter ++;

}

}

if(counter ==0){

get_new_cols=false;

}

}

mipopt (); // solve the MIP

delete.data();

We will refer to Bruteforce each when we are dealing of the algorithm just presented

and when we are dealing of the specific function in the code. In the code, Bruteforce()

function includes the Graycode() function that allows to explore the hypercube, as

explained in paragraph 4.1.4.

4.2 First-fit RB allocation

As we have start to see in section 2.5, a (bad) way to satisfy UEs’ demands is to use

the first-fit (FF) algorithm.

For example, supposing to have N = 3 antennas, a number m = 7 of resource

blocks (RB), and the blocks demands A[1] = 5, A[2] = 2, A[3] = 4, the FF uses the

first ni blocks of the spectrum for each i-th antenna, where ni = A[i].

We can see this in figure 4.4.

In this case, the number of interfering RBs between node i and node j is:

∆i,j = min{ne, nx}

The remaining m−min{ni, nj} will not interfere. This means that the number of

allocated RBs that don’t interfere is: max{0, |ni − nj|}
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Figure 4.4: First-fit algorithm
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Once the RBs have been allocated for each antenna, we can construct a block spectre

matrix β of dimension N ×m in which each row has the first ni elements equal to 1,

and the remaining m− ni setted to 0.

For the example of figure 4.4, where N = 3 and m = 7 the matrix β is:

β =

1 1 1 1 1 0 0

1 1 0 0 0 0 0

1 1 1 1 0 0 0


The total cost of interference ι can be calculated (of course without CPLEX) as:

ι =
N∑
i=1

(
N∑
j=1

βij · βji · αij) (4.12)

We remember that αij is the interference between antenna i and antenna j.

4.2.1 Pseudo-code for First-fit

The pseudo-code for First-fit can be summarized as follows:

/****** main.cpp ***** */

read.data();

foreach(i in N) do{

for(j=0;j<A[i];j++){

block[i][j]=1;

}

}

calculate.interference ();

delete.data();

4.3 Random RB allocation

Another way to satisfy UE’s demands is to use a random resource block (RRB) allo-

cation algorithm.

We can think to choose randomly which RBs to use for each antenna. Of course,

the number of RBs used must be equal to the blocks’ demand of that antenna.

In this way, we will populate a βN×m matrix that is the same of that one presented

in the previous section, with the difference that in this case we randomly choose the

blocks to set to 1.
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4.3.1 A note about random generation

Ross [21] provides a method to randomly choose k elements from a set of n elements

in such a manner that each of the
(
n
k

)
subsets is equally likely to be the subset chosen

(that is the feasible pattern in our case).

Let’s suppose to have already generated such a subset. For each j = 1, ..., n we set:

Ij =

1 if element j is in the subset

0 otherwise

We discuss the conditional distribution of Ij, given I1, ..., Ij−1.

Denoting with P [Ij = 1] the probability that element j of I is equal to 1, we have:

P [I1 = 1] =
k

n

For element 2, we have:

P [I2 = 1|I1 = 1] =
k − 1

n− 1

and

P [I2 = 1|I1 = 0] =
k

n− 1

because in the first case we have already allocated 1 of the k blocks.

We can infer that:

P [I2 = 1|I1] =
k − I1
n− 1

This can be generalized as:

P [Ij = 1|I1, ..., Ij−1] =
k −

∑j−1
i=1 Ii

n− j + 1
(4.13)

where denominator is obtained as n− (j − 1) = n− j + 1.

Let’s call U a uniform (0,1) random variable3. We remember that a uniform random

variable defined in (a, b) is a random variable such that each possible value assumable

is equally probable4.

Since PU < a = a, 0 ≤ a ≤ 1, we can generate a sequence of (at most n) random

numbers U1, U2, ... and set:

3We can reproduce the uniform (0,1) distribution using the uniform random generator of Giovanni
Rinaldi, Research Director at the Institute of Systems Analysis and Computer Science “Antonio
Ruberti”.

4In particular, the probability is
1

b− a
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I1 =

1 if U1 <
k

n

0 otherwise

I2 =

1 if U2 <
k − I1
n− 1

0 otherwise
...

Ij =

1 if U2 <
k −

∑j−1
i=1 Ii

n− j + 1

0 otherwise

The process stops when I1+ · · ·+Ij = k and the random subset (in our case random

pattern) is the k elements whose I-value equals 1.

4.3.2 Pseudo code for RRB

The pseudo-code for RRB can be summarized as follows:

/****** main.cpp ***** */

read.data();

srand(seed);

populate(block_spectre);

foreach(i in N) do{

num= A[i]; // numerator

den = m; // denominator

for(j=0;j<m;j++){

if(U[j]<num/den){

block_spectre[i][j]=1;

num --;

}

else{

block_spectre[i][j]=0;

}

den --;

}

}

calculate.interference ();

delete.data();



Chapter 5

Algorithms for large-scale

coordination

In this chapter, we’ll present some algorithms usable to coordinate a number of antennas

varying up to 57.

We remember that the complexity of this combinatorial optimization problem is 2N ,

where N is the number of antennas, so we won’t be able to enumerate all the columns

in a reasonable time, even if we do it linearly through Bruteforce. Even if Bruteforce

uses a smart way to enumerate, it still enumerates and leads to unacceptable execution

time.

We can still do optimization with columns generation, but we have to design new

algorithms more oriented to efficiency (feasibility with a little execution time) rather

than effectiveness (optimality, that is prohibitive for combinatorial issues).

We have to use some Time-Limits (TL) in running our algorithms, because it isn’t

possible to manage problems with 2N variables with N = 50 or similar.

Note that there are two TLs that have to be studied:

1. A TL on the columns generation.

2. A TL on the total process.

In appendix C we will discuss the criteria to set the two time limits.

As we have to face a combinatorial problem with TL constraints, we have initialized

all the algorithms with a randomic approach that is the same as presented in section

4.3.

From that feasible initial solution, the algorithms will polish the bound in order to

get less interference.

55
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5.1 UBQP

We have seen in section 2.3.2 what is a Quadratic Programming (QP) problem.

Recalling equation (4.8), we have to solve the following constraints separation prob-

lem:

min pTαp− λTp (5.1)

This problem is the same that Bruteforce solves with enumeration.

The idea of this algorithm is to do columns generation solving with CPLEX this

UBQP.

We could think to return a set of feasible columns at every cycle of the algorithm

and so doing column generation.

Unfortunately, as the function (5.1) is in general not convex, CPLEX can’t give us

a set of feasible solutions but can return us only the optimum.

This means that we add only 1 column per time, and then we will solve a new

constraint separation problem, as the constraint separation inequality (4.7) changes λi

and µ at every cycle.

Of course, the column will be added if it has reduced negative cost, that is if its value

is < µ∗, where µ∗ is the N + 1-th dual solution associated to the max block constraint

of the primal model.

As we use this algorithms for large-scale coordination, we expect not to stop the

process for reduced cost reasons, but for time limits ones.

Note about solution pool As CPLEX doesn’t provide a solution pool for problems

with non-convex function, a very simple way to bypass this drawback is to iteratively

add the following constraint for every constraint separation problem:

∑
i:x̃i=0

xi +
∑
i:x̃i=1

(1− xi) ≥ 1 (5.2)

where:

� x̃ is the dual optimum found at the previous run.

� xi is the i-th component of the new dual optimum we want to find.

It’s clear that (5.2) forces CPLEX to find another dual optimum that differs at least

one element from all the x̃ found at previous runs.

This approach is theoretically good, but too much expensive in terms of execution

time, so that many trivial tests shows that is better to solve the optimum primal model

rather than passing through the dual.
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5.1.1 Pseudocode of UBQP

The pseudo-code of UBQP algorithm is:

/* ***** main.cpp ******/

read.data();

crea.master ();

while(get_new_cols && execution_time < time_limitCG) do{

solveUBQP ();

if(new_col < mu*){

addcol.master ()

solve.master ()

counter ++;

}

if(counter ==0){

get_new_cols=false;

}

execution_time += calculate_time ();

}

mipopt(time_limitMIP); // solve the MIP with the assigned

TL

delete.data();

5.2 UBQP flip

This version is very similar to the first one, but it generate a flip pattern at every cycle

of CPLEX’s quadratic solver.

A flip pattern is a pattern that is identical to another except for 1 bit that is

different.

In this algorithm, we can generate a flip pattern in a very trivial way, as follows:

1. Let p∗ be the local optimum of (5.1). We know that p∗ has N components.

2. Let pflip be the flipped pattern. For all i ∈ 0, . . . , N , set pflip[i] = p∗[i]

3. Choose randomly an integer j ∈ 0, . . . , N .

4. If pflip[j] = 0, set pflip[j] = 1, and vice-versa.

Note that the triviality of this approach is due also because of TL reasons.

The flipped pattern will have a much more similar to the optimum cost as many

are the antennas.

A simple example is reported in figure 5.1.

This approach is a heuristic of type “local search”, as it finds another pattern in

proximity of the pattern that has been added to the primal problem.
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Figure 5.1: Example of flipped pattern

5.2.1 Pseudocode of UBQP flip

The pseudocode of UBQP flipped algorithm is:

/****** main.cpp ***** */

read.data();

crea.master ();

while(get_new_cols && execution_time < time_limitCG) do{

solveUBQP ();

if(new_col < mu*){

addcol.master ()

solve.master ()

counter ++;

}

if(counter ==0){

get_new_cols=false;

}

execution_time += calculate_time ();

}

mipopt(time_limitMIP); // solve the MIP with the assigned TL

delete.data();
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5.3 UBQP linearized

CPLEX has a function called populate that returns the optimal solution with other

good feasible ones, according to some parameters such as:

- CPXPARAM MIP Pool Intensity, controls the trade-off between the number of

solutions generated for the solution pool and the amount of time or memory

consumed.

- CPXPARAM MIP Pool Capacity, sets the maximum number of solutions kept

in the solution pool.

- CPXPARAM MIP Pool RelGap, sets a relative tolerance on the objective value

for the solutions in the solution pool. Solutions that are worse (either greater in

the case of a minimization, or less in the case of a maximization) than the in-

cumbent solution by this measure are not kept in the solution pool. For example,

setting this parameter to 0.01 make solutions worse than the incumbent by 1%

or more to be discarded.

- CPXPARAM MIP Pool AbsGap, sets an absolute tolerance on the objective

value. It works similar to the previous one.

All populate parameters are available in [22].

In order to exploit the populate function of CPLEX, that returns a certain sized

pool of feasible (and good) solution, we can think to transform the quadratic problem

into a linearized one.

We can linearize equation (5.1) in the following way:

min
∑

1≤i<j≤N

2αijyij +
N∑
i=1

λixi (5.3)

s.t.

yij ≥ xi + xj − 1 ∀i, j : i < j (5.4)

yij ≤ xi ∀i, j : i < j (5.5)

yij ≤ xj ∀i, j : i < j (5.6)

x ∈ {0, 1}N (5.7)

y ∈ {0, 1}(
N
2 ) (5.8)

where:

- xi is the i-th element of the pattern (that is the column) we are searching for.
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- yij = xixj, so that is 1 if both xi and xj are 1, and 0 otherwise.

- Expression (5.3) states that we must minimize the cost associated with

- Inequality (5.4) states that if both xi and xj are 1 then even yij must be 1.

- Inequalities (5.5) and (5.6) states that if xi or xj are 0, then even yij must be 0.

As we have
(
N
2

)
= N · (N − 1)/2 yij variables, and for each yij there are three

constraints, we have in total
3

2
·N · (N − 1) constraints.

This number of constraints is larger compared to the original UBQP.

In CPLEX, we can ask to the populate function to store a maximum number K of

feasible and good solutions. Note that this number may be not reached, depending on

the parameters explained at the beginning of this section.

5.3.1 Pseudocode of UBQP linearized

The pseudocode of UBQP linearized is:

/****** main.cpp ***** */

read.data();

crea.master ();

while(get_new_cols && execution_time < time_limitCG) do{

solvelinzdUBQP ();

populate ();

for(i=0;i<populate.size();i++){

if(new_col[i] < mu*){

addcol.master ()

solve.master ()

counter ++;

}

}

if(counter ==0){

get_new_cols=false;

}

execution_time += calculate_time ();

}

mipopt(time_limitMIP); // solve the MIP with the assigned TL

delete.data();



Chapter 6

Performance evaluation

In this chapter, we’ll present the results of the various algorithms.

The performances we will evaluate are:

� Interference gap, we will use the following formula:

GAP =
Heur −Ref

Heur
% (6.1)

where Heur is the value of the heuristic used and Ref is the algorithm of ref-

erence. When possible, we’ll use the optimum algorithm (that is the CPLEX’s

mipopt on the complete model) as Ref , otherwise we will use the best algorithm

available.

Note that Heur R Ref , so for example can be lower than the optimum (e.g. in

the continuous relaxation) or greater (e.g. in the first-fit algorithm) or even equal

(we will see it happens often in Bruteforce algorithm),

Of course (6.1) underestimates the real gap, because 0 ≤ GAP < 100, and we

can’t have a measure of how much worse than the optimum is the heuristic. We

decided to use (6.1) because of its fluency in comparison.

� Execution time, as our optimization problem must be solved iteratively in

reality, the execution time is crucial. We remind that the transmission data

occurs every TTI, that is 1 ms. It’s important to use fast algorithm.

Note aboute test All the tests have been done on a PC with 8 Intel Core i7 CPUs

at 3.60 GHz, 16 GB of RAM and Ubuntu 14.04 OS, using CPLEX 12.6.1.

The tests have been done through scripts, which launch the program we have written

and simulate a certain configuration of a LTE system as described in chapter 3. A

general script can be written as follows:
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/****** script ***** */

for ($nAnt =3;$nAnt <MAX_nAnt;$nAnt +=3){ do

for ($nBlocks in 25 50 100){ do

for ($param in param_valued){ do # only if

the algorithm has additional parameters

for ($seed in 1:10){ do

./main $nAnt $nBlocks $param $seed

done

done

done

done

Instead, the statistics associated to the data obtained from test are obtained using

perlscript, a particular type of script a bit more elaborated that allows to rapidly have

many statistics about the algorithms.

6.1 Scenarios

Tests have been conducted basing on 57 antennas disposed at the vertices of hexagons,

as we can see in figure 3.2.

The parameters of our tests are:

- Number of blocks: LTE standards [23] refer to a bandwidth of 5, 10 or 20

MHz. As 1 RB = 180 kHz these bandwidths can be translated in 25, 50 and 100

resource blocks (some RBs are reserved). We call this parameter m.

- Interference matrix: Each element of the inteference matrix can be computed

based on the position and radiation pattern of the antennas. In practice, it is

the power αij received by antenna i from j, and it is expressed in Watt. The

radiation pattern of a LTE anisotropic antenna has the typical “beam” form.

- Blocks demand: we can set 3 different scenarios:

Low demand

Ai ∈


[5− 8] if m = 25

[10− 15] if m = 50

[20− 30] if m = 100

Average demand

Ai ∈


[12− 15] if m = 25

[25− 30] if m = 50

[50− 60] if m = 100
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High demand

Ai ∈


[20− 23] if m = 25

[40− 45] if m = 50

[80− 90] if m = 100

where Ai is the demand of i-th antenna.

The variability of Ai is given by the rand() function of C++ that provides a

uniform distribution of random numbers between a given interval.

- Weights: as we refer to a homogeneous network composed only by macro-cells,

we set to 1 every weight of every antenna. So, the cost of interference will depend

only on the interference matrix. We have called this parameter ω.

.

6.2 Small-scale coordination

In this section we present the results of:

� Optimum algorithm (OPT): it’s taking the whole 2N×N matrix of all possible

patterns and give it to CPLEX in order to launch the integer B& B algorithm.

Its interference cost will be the reference for the others algorithm. The command

line to execute OPT is:

./main Nant Nblock Seed

Every seed creates a particular demand scenario. For each N and m instance, we

use 10 different seeds. As N varies on 3, 6, ..., 21 and m = 25, 50, 100, the total

number of tests for OPT is 21 · 3 · 10 = 630

� Continuous Relaxation (RC): it’s similar to the previous one but launch the

simplex method on the 2N × N matrix, so it gives us a lower-bound. It has

the same test characteristics of OPT. Theoretically, it may not return an integer

result, so we have to use it as a reference for the lower bound. As the pattern-

based model is strong, we may have an integer solution when running it.

� Bruteforce (BF): it works explained in chapter 4. The command line to execute

OPT is:

./main Nant Nblock Permille Seed
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For each N , m and K instance, we use 10 different seeds. As N varies on

3, 6, ..., 21, m = 25, 50, 100 and K = 1, 2, 3, 5, 10, 20, 50, 100, 200, 500, 1000, the

total number of tests for BF is 21 · 3 · 11 · 10 = 6930

� First-fit allocation (FF): it works as explained in chapter 4. It has the same

test characteristics of OPT.

� First-fit allocation (RRB): it works as explained in chapter 4. The command

line to execute OPT is:

./main Nant Nblock Seed Seed2

Seed2 has been added in order to have a more realistic view of how RRB works.

The seconds seed allows a different feasible random patterns generation for every

demand configuration created by the first seed for every instance of N and m. The

total number of tests for RRB is 21 · 3 · 10 · 10 = 6300.

As BF have an additional parameter K that is the max number of columns we add

at every cycle, we have to do an additional study on the optimal choice of K. This

study has been reported in Appendix B.

In these scenarios all weights of antennas have been setted to 1, in the hypothesis

we are coordinating a group of macro-cells.

We use equation (6.1) to calculate the gaps of the algorithms compared to OPT.

For each scenario we will show a speedup comparison between BF and CR 1.

The speedup SUAB between algorithm A and algorithm B is defined as:

SUAB =
Ex.T imeA
Ex.T imeB

(6.2)

Of course, A and B must solve the same problem in the same conditions (e.g. same

machine).

If SUAB > 1 then B is faster than A. For example, if SUAB = 2, it means that B is

twice faster than A. If SUAB < 1 then B is slower than A. For example, if SUAB = 0.333,

it means that A is three times faster than B.

Trivially, if SUAB = 1, the algorithms have the same execution time, but this case

is more theoretical than real.

We remember that BF has a parameter K that is the maximum number of columns

to be added at every cycle of the algorithm.

We can define K in absolute values (e.g. 100 columns for iteration) or in relative

values. We prefer this last choice.

1We haven’t compared FF and RRB in terms of execution time because it would have been trivial
as both of them run under 1 ms, even if they have higher gaps
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Table 6.1: Small coordination in average demand scenario, 50 Blocks: OPT, RC and
BF. K = 1 � at 21 antennas

OPT RC BF
N Ex. time (ms) Gap (%) Ex. time (ms) Gap (%) Ex. time (ms)
3 1.8 0.0 0.3 0.0 1.8
6 2.3 0.0 0.4 0.0 2.2
9 6.1 0.0 1.0 0.0 5.2
12 45 0.0 8 0.0 10
15 538 0.0 103 0.0 36
18 6753 0.0 1364 0.0 222
21 86796 0.0 15298 0.0 1632

K is defined as reported in (B.1).

We search the optimal K that minimize the overall execution time of Bruteforce

algorithm, and use it when compare the execution times of the algorithms.

The choice of the optimal K is reported in Appendix B and the value of the optimal

K is reported in each interference gap table and speedup chart.

In small-scale coordination we are particularly in coordinating 21 antennas because

with the system model we have done, such a coordination makes the central cluster of

antennas to be “protected” from interference.

6.2.1 Average demand

Interference gap

Table 6.1 and 6.2 summarizes the results of “average demand” scenario in the 50 blocks

scenario, reporting both execution times and gaps.

The K parameter used at 21 antennas is 1 �, while in the other cases the K

parameter may differ. In all the cases, BF runs in acceptable times.

Configurations with 25 and 100 blocks give very similar results, so we don’t report

those tables.
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Table 6.2: Small coordination in average demand scenario, 50 blocks: OPT, FF and
RRB.

OPT FF RRB
N Ex. time (ms) Gap (%) Ex. time (ms) Gap (%) Ex. time (ms)
3 1.8 60.3 0.05 29.3 0.06
6 2.3 61.2 0.07 32.0 0.08
9 6.1 60.1 0.08 30.1 0.10
12 45 59.2 0.11 28.2 0.12
15 538 58.9 0.15 27.5 0.16
18 6753 58.7 0.20 27.4 0.21
21 86796 57.9 0.23 25.8 0.26

Table 6.3: Small coordination in low demand scenario, 50 Blocks: OPT, RC and BF.

OPT RC BF
N Ex. time (ms) Gap (%) Ex. time (ms) Gap (%) Ex. time (ms)
3 1.2 0.0 0.28 0.0 1.6
6 2.3 0.0 0.37 0.0 2.5
9 6.0 0.0 0.99 0.0 2.8
12 44 0.0 8 0.0 6
15 449 0.0 103 0.0 23
18 5485 0.0 1345 0.0 158
21 68231 0.0 14185 0.0 1247

Speedup comparison

Figure 6.1 shows the speedup comparison between the continuous relaxation and Brute-

force when antennas have 50 RB at their disposal. Of course, we don’t compare these

algorithms with the first-fit or with the random one because this latter have consider-

ably smaller execution time.

6.2.2 Low demand

Interference gap

Table 6.3 and 6.4 summarizes the results of “low demand” scenario in the 50 blocks

scenario, reporting both execution times and gaps.

The K parameter used at 21 antennas is 3 �, while in the other cases the K

parameter may differ. In all the cases, BF runs in acceptable times.
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Figure 6.1: Average demand scenario: speedup comparison for 50 blocks

Table 6.4: Small coordination in low demand scenario, 50 blocks: OPT, FF and RRB.

OPT FF RRB
N Ex. time (ms) Gap (%) Ex. time (ms) Gap (%) Ex. time (ms)
3 1.2 100 0.05 100 0.06
6 2.3 99.5 0.07 98.4 0.07
9 6.0 98.9 0.09 95.9 0.09
12 44 98.2 0.11 93.4 0.13
15 449 97.8 0.15 91.8 0.17
18 5485 97.4 0.20 90.4 0.20
21 68231 96.9 0.23 88.7 0.25
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Figure 6.2: Low demand scenario: speedup comparison for 50 blocks

Speedup comparison

Fig 6.2 shows the speedup comparison between the continuous relaxation and Brute-

force when antennas have 50 RB at their disposal. Of course, we don’t compare these

algorithms with the first-fit or with the random one because this latter have consider-

ably smaller execution time.

Even in this case BF is faster than RC from 12 antennas.

6.2.3 High demand

Interference gap

Table 6.5 and 6.6 summarizes the results of “High demand” scenario using m = 50.

The K parameter used at 21 antennas is 1 �, while in the other cases the K

parameter may differ. In all the cases, BF runs in acceptable times.

Speedup comparison

Figure 6.3 shows the speedup comparison between the continuous relaxation and Brute-

force when antennas have 50 RB at their disposal. Of course, we don’t compare these
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Table 6.5: Small coordination in high demand scenario, 50 Blocks: OPT, RC and BF.

OPT RC BF
N Ex. time (ms) Gap (%) Ex. time (ms) Gap (%) Ex. time (ms)
3 1.8 0.0 0.31 0.0 1.9
6 2.3 0.0 0.38 0.0 2.1
9 6.8 0.0 1.1 0.0 2.3
12 62 0.0 11 0.0 4
15 717 0.0 107 0.0 22
18 8298 0.0 1424 0.0 166
21 116985 0.0 14238 0.0 1167

Table 6.6: Small coordination in high demand scenario, 50 blocks: OPT, FF and RRB

OPT FF RRB
N Ex. time (ms) Gap (%) Ex. time (ms) Gap (%) Ex. time (ms)
3 1.8 17.1 0.05 3.5 0.06
6 2.3 16.0 0.07 3.3 0.08
9 6.8 16.1 0.09 3.3 0.10
12 62 15.9 0.11 3.2 0.12
15 717 15.8 0.15 3.2 0.18
18 8298 16.0 0.19 3.2 0.20
21 116985 15.8 0.25 3.1 0.25
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Figure 6.3: High demand scenario: speedup comparison for 50 blocks

algorithms with the first-fit or with the random one because this latter have consider-

ably smaller execution time.

6.3 Evaluation of small-scale algorithms

We have seen from the previous sections we have seen that our Bruteforce (BF) algo-

rithm reaches the optimal solution in very less time compared to CPLEX’s branch-and-

bound and to the continuous relaxation. This latter still reaches the optimal solution,

but employs too much time, even if it’s considerably less than the optimal solution.

First-fit (FF) and random resource block allocation (RRB) has high gaps in general,

even if the RRB is always better than FF.

From tables of section 6.2, we can easily see that the average gap of this two

algorithms decrease as the demand increases.

Indeed, let’s call ρi = Ai/m the saturation ratio of i-th antenna. We remember that

Ai ≤ m for every i. So, if Ai increases, as it happens from “low” to “high” scenario,

ρi → 1.

If this happens, then the RBs at disposal of the i-th antenna are very few, so the

possibility of optimization decreases and so every algorithm tends to return the same

result (or similar).
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Figure 6.4: FF and RRB gaps over various scenarios

Instead, if Ai is very little compared to the m blocks at disposal from i-th antenna,

then it’s very important how we allocate these blocks. In this case, when ρ → 0, we

can see huge difference between the mathematical algorithms and FF and RRB.

In particular, RRB always gives a better bound than FF.

This can be graphically view in figure 6.4.

Instead RC and BF are very robust at the changing of the demand and their gaps

still remain 0.

About execution time

Bruteforce is very suitable for small-scale coordination as it returns the optimum in a

very less time compared to CPLEX branch-and-bound and RC, as we can see from the

speedup charts.

Figure 6.5 shows how it varies the execution time of OPT, RC and BF in the various

scenarios.

It seems that the execution time of OPT increases with the demand while RC is

stable and BF prefer to deal with high demands, but this doesn’t affect the result too

much.

A comprehension of the semi-constant speedup of RC is now clearly visible, as the

execution time both of OPT and RC grows of 1 order of magnitude for every more 3

antennas to coordinate.
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Figure 6.5: OPT, RC and BF execution times over various scenarios

However, we can see that the execution time of BF tends to double for every more

antenna. This is due to the linear enumeration of Graycode. Indeed, calling TN−1 the

execution time necessary to enumerate 2N−1 patterns, knowing that 2N = 2N−1 · 2 we

have that the execution time TN necessary to enumerate 2N pattern is:

TN = TN−1 · 2 (6.3)

This effect is clearly visible from about 15 antennas. This is also the reasons for

which it’s not reasonable to use BF for large-scale coordination.

FF and RRB instead are very fast, but they huge gap make them not efficient in

order to minimize interference.

About fairness

We would prefer if every antenna we coordinate contributes in the same quantity to

the overall interference. This would lead to the same Quality of Service perceived by

each user of the system.

Fairness is a measure of this fact. In reality, a situation of perfect fairness practi-

cally is never reached.

A way to quantify how unfair our system is to quantify how variable the data are.

In this case, we can plot a Lorenz curve. In this case, we can define our Lorenz curve
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Figure 6.6: Fairness comparison in average demand scenario

as:

1. Sort the single cost of interference φi from each antenna and get the ordered

statistics φi(1) ≤ φj(2) . . . φ
k
(N) where i, j, k are different antennas and 1, 2, . . . , N

are the indexes for them.

2. Compute Φ =
∑N

i=1 φi, that is the total cost of interference.

3. Plot points (1/N, φi(1)/Φ), (2/N, (φj(1) + φi(2))/Φ, . . . , (k/N,
∑N

i=1 φi/T )

4. Interpolate, assuming (0,0) as first point of the curve.

Maximum fairness is represented by the bisector of the first quadrant. This is

called the line of maximum fairness, and can be plotted for reference. The situation

of minimum fairness (or maximum unfairness)is instead the horizontal axis and the

vertical line passing through (1,0).

In the middle of these two references there are the other common cases.

In figure 6.6 is reported the fairness comparison of our small-scale algorithms 2 in

the average scenario.

As we can see, all the algorithms have a good fairness, even if BF is more unfair

than FF and RRB.

2Of course, OPT and RC are not reported as BF also reach the optimal solution.
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Figure 6.7: Fairness comparison in low demand scenario

This is due to an optimization issue, as optimization aims to minimize the overall

interference. In fact we have to remind that the total interference with the use of BF is

less than FF and RRB, so that even the more penalized antennas coordinated by BF

causes less interference than FF and RRB.

From figure 6.7 and 6.8 we can also see that fairness increases with the demand.

For an high demand scenario, the fairnesses of the three algorithms are practically

overlapped.

Even in this cases, we have to remind that the increase of the demand makes more

interference among the antennas we coordinate.

We can conclude that Bruteforce is the best small-scale algorithm among all those

seen.

6.4 Large-scale coordination

In large-scale coordination is prohibitive to refer to the optimal solution due to the

exponential execution time.

So, we can do a comparison based on the total interference cost [W], including for

each algorithm the two TLs discussed in chapter 5.

As we have a global TL of 5 s on the total execution time, we won’t compare the
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Figure 6.8: Fairness comparison in high demand scenario

actual execution time3.

The algorithms we will compare are:

� First-fit

� Random allocation

� UBQP, that is the columns generation through CPLEX’s QP solver

� UBQP flip, that is a version of UBQP in which every time CPLEX gives us

a pattern we randomly flip a bit of that pattern in order to generate another

pattern similar to the previous one

� UBQP linearised, that is the linearisation of the UBQP problem, which can

exploit populate function of CPLEX.

From preliminary tests that the total execution time of these large-scale algorithms

is due practically only to column generation and to final mipopt.

Trivially, if we increase the TL on the column generation, we’ll generate more

variables and get a better solution, while if we increase the TL on the mipopt, we’ll

find a better bound with the variables at disposal.

3The actual execution time may be greater than 5 s because the execution time is not controlled
in real time
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Table 6.7: Large coordination in average demand scenario: gap comparison until 21
antennas

N UBQP UBQP flip UBQP linzd
3 0.0 0.0 0.0
6 0.0 0.0 0.0
9 0.0 0.0 0.0
12 0.0 0.0 0.0
15 0.0 0.0 0.0
18 0.6 0.4 2.7
21 3.0 2.3 2.4

So, we have firstly tuned the algorithms splitting the overall TL in its two compo-

nents column generation and mipopt in order to get the best solution at disposal.

We refer to appendix C for details about the choice of optimal partition.

All the following results have been averaged from a set of 10 runs, with the exception

of RRB, that has been averaged from a set of 100 runs, as it has been ran with 10

different seeds for each configuration.

6.4.1 Average demand

We can compare our algorithms with the optimal solution until 21 antennas.

Table 6.7 and summarizes the results of “average demand” scenario in the 50 blocks

scenario, reporting the gaps compared to the optimal solution.

We can see that these algorithm are very good also in small-scale coordination, even

if they have a bigger execution time than Bruteforce.

Figure 6.9 gives us an overall vision of the 3 algorithms.

We can see clearly that the FF is very distant from the other algorithms.

Figure 6.10 shows in detail the interference comparison among UBQP, UBQP flip,

UBQP linzd and RRB.

6.4.2 Low demand

Table 6.8 and summarizes the results of “low demand” scenario in the 50 blocks sce-

nario, reporting the gaps compared to the optimal solution.

Figure 6.11 gives us an overall vision of the 3 algorithms.

In this case, we can see a quite large gap between our heuristics and RRB, with FF

that is very far from the other algorithms.

Figure 6.12 shows in detail the interference comparison among UBQP, UBQP flip,

UBQP linzd and RRB.
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Figure 6.9: Interference comparison in average demand scenario

Table 6.8: Large coordination in low demand scenario: gap comparison until 21 anten-
nas

N UBQP UBQP flip UBQP linzd
3 0.0 0.0 0.0
6 0.0 0.0 0.0
9 0.0 0.0 0.0
12 0.0 0.0 0.0
15 0.0 0.0 0.0
18 0.0 0.0 0.0
21 0.3 0.1 1.0
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(a) 24-33 antennas.

(b) 36-48 antennas.

(c) 51-57 antennas.

Figure 6.10: Interference comparison in average demand scenario: zoom on UBQP,
UBQP flip, UBQP linzd and RRB
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Figure 6.11: Interference comparison in low demand scenario

Table 6.9: Large coordination in high demand scenario: gap comparison until 21 an-
tennas

N UBQP UBQP flip UBQP linzd
3 0.0 0.0 0.0
6 0.0 0.0 0.0
9 0.0 0.0 0.0
12 0.0 0.0 0.0
15 0.0 0.0 0.0
18 0.0 0.0 0.0
21 0.0 0.0 0.0

We can clearly see that the differences between the algorithms are more pronounced

in this case.

For example, we can coordinate 33 antennas with an overall interference of about

100 W instead of 500 W as obtained from RRB.

Even at 57 antennas, with the “UBQP flip” algorithm we can save about 400 W of

interference.

6.4.3 High demand

Table 6.9 and summarizes the results of “high demand” scenario in the 50 blocks

scenario, reporting the gaps compared to the optimal solution.

As expectable, the heuristics reach the optimal solution in a high demand scenario.
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(a) 24-33 antennas.

(b) 36-48 antennas.

(c) 51-57 antennas.

Figure 6.12: Interference comparison in low demand scenario: zoom on UBQP, UBQP
flip, UBQP linzd and RRB
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Figure 6.13: Interference comparison in high demand scenario

Figure 6.13 gives us an overall vision of the 3 algorithms.

In this case, we can see that the gap among our heuristics and RRB is very small,

and also FF doesn’t differ too much.

Figure 6.14 shows in detail the interference comparison among UBQP, UBQP flip,

UBQP linzd and RRB.

We can clearly see that UBQP, UBQP flip, UBQP linzd and RRB practically return

the same result from 24 antennas to 57.

6.5 Evaluation of large-scale algorithms

We have seen that with the increase of N , the gaps between algorithms decrease com-

pared to the small-scale coordination. This is due to the increase of complexity of the

problem with a TL of 5 s.

We can also see that in a low demand scenario a coordinated scheduling leads to

observable better results, while in the high demand scenario the algorithms return

practically the same result.

In every scenarios, when N → 57, all the algorithms tend to give the same results.

Note that at 57 antenna sometimes (e.g. in the high scenario) the RRB can do

better than some of our heuristics. The reason is that when CPLEX can’t return

(for time-limit reasons) a solution, the algorithm takes the initial one, that is random.

On the other side, RRB is ran 10 times for every configuration, so it’s possible that
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(a) 24-33 antennas.

(b) 36-48 antennas.

(c) 51-57 antennas.

Figure 6.14: Interference comparison in high demand scenario: zoom on UBQP, UBQP
flip, UBQP linzd and RRB
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sometimes the solution of RRB is better than the random one returned by a heuristic

when CPLEX can’t return a solution.

From the previous charts, we can say that UBQP flip is a slight better version than

UBQP, and so UBQP flip is our best algorithm at disposal for a large-scale coordination.

This algorithm can significantly reduce interference even for a large number of

antennas in a low scenario.
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Chapter 7

Conclusions

In this thesis, the inter-cell interference problem in mobile networks has been addressed.

Since the interference represents a major limiting factor of LTE, a description of solution

based on mathematical techniques has been provided.

In chapter 2 we have shown a quite exhausting background on LTE and on mathe-

matical optimization.

In chapter 3 we have propose a system model based on hexagons and on three main

entities: antenna, communication channel and user. Then, a mathematical model has

been also proposed to translate the system in a mathematical language.

Chapters 4 describes the algorithm Bruteforce, that does a smart enumeration of

columns in order to do the column generation that helps the problem to find a solution

without using all the possible variables, that are exponential.

In chapters 5 we have defined a time limit of 5 s for the coordination problem, and

we have seen new algorithms still based on the column generation technique but not

on enumeration.

Evaluating the performances of our algorithms, we have seen:

� In small-scale coordination Bruteforce reaches the optimal solution in the small-

scale coordination, running in acceptable times (about 1 s).

� In large-scale coordination, where Bruteforce is no more suitable, we can use the

UBQP or UBQP flip algorithms in order to obtain less interference in a fixed

time of 5 s.

At every scale of coordination, we observe that the reduction of interference becomes

more pronounced as the block demand becomes lower. This because there are more

possibilities to optimize when the demand is low, and vice versa.

Future works can use the results of this thesis to test how this algorithms improves

the network performance in dynamic coordination, where we iteratively coordinate a

certain set of antennas over the time.
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Appendix A

CPLEX

CPLEX is the abbreviation of IBM ILOG CPLEX Optimization Studio ©. It

is a software developed in order to solve mathematical programming problems.

CPLEX can solve many types of mathematical programming such as:

� Linear programming (LP)

� Integer linear programming (ILP)

� Mixed integer linear programming (MILP)

� Quadratically constrained quadratic programming (QCQP)

and many others.

CPLEX can work in 2 modalities:

1. Interactive modality: based on launching CPLEX as a normal program and

inserting commands from the terminal. It can be useful for problems with few

variables and constraints, and it is easier to use.

2. Callable library: based on including CPLEX library (cplex.h) in a C or C++

program and writing a code. It is more flexible than the previous one and it

allows to iteratively add variables and/or constraints to the problem.

The second modality is of course that one which more suits our aims.
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Appendix B

Tuning of Bruteforce

In this chapter we show how K has been tuned for Bruteforce algorithm.

In this appendix we report the tuning only in the case of average demand. The

tuning of K wants to minimize the overall execution time of Bruteforce at 21 antennas.

We are particularly interested in coordinating 21 antennas because, as we can see

from fig 3.2, we are able to “protect” from interference the central cluster.

The total execution time of algorithm Bruteforce (BF) can be divided in:

- Enumeration’s execution time (ENU) : amount of time taken to generate

the dual problem, solve it enumerating through Graycode and give back the new

patterns.

- Primopt time (PRIM) : amount of time taken by CPLEX to solve the relaxed

problem with the new patterns.

- Mipopt time (MIP) : execution time of CPLEX’s B&B in order to solve the

problem at integrality.

- Overhead time (OH): this time can be defined as:

OH = TOT − ENU − PRIM −MIP , where TOT is the total execution time

measured by the machine.

The following charts show the so-called profiling of the algorithm Bruteforce. This

is helpful as it shows strengths and weaknesses of the algorithm, and it permit us to

individuate the best K.

Instead of varying K on absolute values (e.g. 1000 columns per time) we have set

K as:

K = k · 2N

1000
(B.1)

with k that is a “permille” parameter that varies on a logarithmic scale.
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Figure B.1: Average demand scenario: enumeration’s execution time for 21 antennas

Table B.1: Best K for every set of antennas

Number of antennas K
3 1000
6 1000
9 20
12 20
15 2
18 2
21 1

The values of k we have tested are: 1, 2, 3, 5, 10, 20, 50, 100, 200, 500, 1000.

These values let us see the trend of the algorithm without stressing tests and ma-

chines.

Note that some k is not available for N < 10, for example k = 50 doesn’t exist

for N = 3, as the 5% of 23 = 8 is rounded to 0. This have been taken in account in

the code we have written, so that only non-trivial k have been taken in account in the

simulation.

Table B.1 summarizes the studies on the optimal K for every set of coordinated

antennas for the average scenario.

This table can be used in Bruteforce’s code to make it as fast as possible for every

set of antennas. We can clearly note that K tends to decrease with the increase of N .
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Figure B.2: Average demand scenario: Primopt execution time for 21 antennas

Figure B.3: Average demand scenario: Mipopt execution time for 21 antennas
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Figure B.4: Average demand scenario: Total active execution time for 21 antennas

Figure B.5: Average demand scenario: Total active execution time for 21 antennas,
zoom on 1-10 �
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Figure B.6: Average demand scenario: Distribution of total execution time for 21
antennas

Figure B.7: Average demand scenario: Percentage distribution of execution time for
21 antennas
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Comments

From the previous charts we can deduce that:

� The enumeration execution time implicitly has a trade-off: if K is very little, than

the graycode and bruteforce function will run fast, but the whole algorithm needs

more cycles before not finding a column with a reduced negative cost. Vice-versa

if K is very big, the cycles would be repeated considerably less, but the above

functions will employ much time. Another consideration is about the resolution

of the test: we can note a swoop at 1000 �, but we don’t know how the time

scales between 500 and 1000 �.

So, the enumeration execution time has a typical trade-off function shape.

� The primopt execution time, that is the execution time of CPLEX’s Simplex

method, grows not linearly with K. This is due to the bigger number of variables

dealt with by CPLEX at every time it solves the master.

� Of course, also mipopt suffers the growth of the number of variables. Thus, as

it is one of the major contributor of the overall execution time of Bruteforce

algorithm, is not recommended to go to high values of permille parameter.



Appendix C

Tuning of time limits

In this chapter we deal with the tuning of the time limits (TLs) for large-scale algo-

rithms.

We remind that we have a fixed TL of 5 s on the total execution time. The TL on

the total execution time can be divided with very good degree of approximation in:

- TL on the column generation

- TL on the CPLEX’s branch-and-bound.

Of course we want to split the total TL in order to achieve a minimum interference.

We will consider the following partitions:

� 1-4 that is 1 s for the column generation and 4 s for the final branch-and-bound.

This configuration should help the problem to find a good quality solution with

the variables at disposal, but penalize may not provide the problem with a suffi-

cient number of variables.

� 2-3 that is 1 s for the column generation and 4 s for the final branch-and-bound.

This is a middle configuration.

� 3-2 that is 1 s for the column generation and 4 s for the final branch-and-bound.

This is a middle configuration.

� 4-1 that is 1 s for the column generation and 4 s for the final branch-and-bound.

This configuration should help the problem with a set of good variables but makes

the solver do the branch-and-bound in a little time.

We considered only the optimal partition for average demand scenario and conjec-

ture that partition is good also for the other scenarios.
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Figure C.1: TL’s Gap comparison for UBQP algorithm: 15-36 antennas

C.1 Partition for UBQP

In the following figures we report the tuning of the two TLs. As we have no optimal

reference, we use the relative gap between every partition.

We compute this gap with the following formula:

Gapi,j =
V ali − V alj

V ali
(C.1)

where V ali, V alj is the value obtained by algorithm i, j.

If such a gap is positive, then algorithm j is better than algorithm i (as we are

interested in minimizing the interference), and if it is negative, then algorithm i is

better than algorithm j, because it means that V ali < V alj.

We have to keep this in mind when analysing the following charts.

For example, Gap14−23 is the gap between the UBQP algorithm ran with 1-4 parti-

tion and the one with 2-3 partition.

In that case the formula used is: Gap14,23 =
V al14 − V al23

V al14
.

Figures C.1 and C.2 show the gap comparison1 for algorithm UBQP, referring to

an average demand scenario and a bandwidth of 50 RBs.

From these charts we can characterize three zones:

1We don’t report gaps for 3,6,9 and 12 antennas because they are 0. The effects of the partition
occur from 15 antennas onwards.
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Figure C.2: TL’s Gap comparison for UBQP algorithm: 39-57 antennas

3-27 antennas , in this zone is better to use the 4− 1 configuration. Indeed, all the

gaps are relative, that is the 4− 1 partition is the best partition.

30-39 antennas , in this zone is better to use a 3 − 2 configuration. Indeed, the

only negative column is the 3 − 2 one. This means that it is the best partition

available.

42-57 antennas , in this zone is better to use a 2 − 3 configuration. In fact, we can

note that the gaps tend to be 0 in proximity of 57 antennas.

We can notice that with the growing of the number of antennas, the best partition

tends to prefer to split its time for the branch-and-bound, because the problem becomes

more difficult to solve. As said before, the gaps tend to 0 in proximity of 57 antennas.

This is due to the complexity of the algorithm, that can’t deal very well with a very

great number of antennas.

C.2 Partition for UBQP flip

For this algorithm we can use the same considerations of the UBQP.

Figure ?? and ?? show the gap comparison for algorithm UBQP flip, referring to

an average demand scenario and a bandwidth of 50 RBs.

We can characterize four zones:
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Figure C.3: TL’s Gap comparison for UBQP flip algorithm: 15-36 antennas

Figure C.4: TL’s Gap comparison for UBQP flip algorithm: 39-57 antennas
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3-24 antennas , in this zone is better to use the 4− 1 configuration.

27-33 antennas , in this zone is better to use a 3− 2 configuration.

36-42 antennas , in this zone is better to use a 2− 3 configuration.

45-57 antennas , in this zone is better to use a 1− 4 configuration.

We can observe a trend to use the time at disposal to the branch-and-bound with

the growth of the number of antennas.

C.3 Partition and tuning of K for UBQP linzd

In this algorithm we have an additional parameter compared to the previous ones: K.

We have seen in chapter 7 that this parameter is related to the generation of the

columns: the bigger the K, the bigger the number of columns generated.

In fact, there is no static relationship between K and the number of columns gen-

erated, due to many CPLEX parameters. The observable fact is that the number of

columns generated can be considerably smaller than expected.

Recalling equation (B.1) we see how K is related to 2N . As in large-scale coordi-

nation N can be 50 or similar, it’s not manageable to give as parameter such K, so we

have modified the code in order to make the theoretical number of columns manageable

from the machine. When dealing with a number of antennas greater than 21 (e.g. 51),

the k parameter has been reduced.

The tuning of this algorithm has been done focusing on certain K values and on

certain values of N .

In particular, as high values of K don’t return good results, we have focused on the

following values: 1, 2, 3, 5, 10.

The numbers of antennas we have studied are: 27, 36, 42, 48, 57. These values have

been chosen in order to have a sufficient resolution that allows us to characterize some

zones.

Even in this case the study has as reference the average demand scenario and 50

RBs at disposal from each antenna.

Figures C.5 and C.6 report the result of the study.

We observe that pratically the 1 configuration is the best, so we can tune K = 1

for every number of antenna. Furthermore, the choice of K becomes more irrelevant

with the growing of N .

We can also characterize three zones:

15-36 antennas in this zone is better to use the 4− 1 configuration.
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(a) 27 antennas.

(b) 36 antennas.

(c) 45 antennas.

Figure C.5: Tuning of UBQP linzd: 27-45 antennas.
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(a) 48 antennas.

(b) 57 antennas

Figure C.6: Tuning of UBQP linzd: 48-57 antennas.



102 APPENDIX C. TUNING OF TIME LIMITS

39-48 antennas in this zone is better to use a 3− 2 configuration.

51-57 antennas in this zone is better to use a 2− 3 configuration.

With the tuning of these algorithms, we have ran a test, whose results are presented

in chapter 6.
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