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1 Introduction

In many real life situations we have to face the problem of routing a flow on
a network, having under control the maximum end-to-end delay that it accu-
mulates, while crossing it (e.g., industrial control systems, remote sensing and
surveillance systems, live Internet Protocol Television and IP Telephony).
The purpose of the following paper is to build effective lower bounds for this
general problem.
For this to be done we are going to take advantage from a nested decomposition
approaches.
As we can check in §2, where a mathematical model is presented, delay con-
straint has a quadratic formulation, that makes it hard to handle.
Hence, we want to perform a Lagrangian relaxation on that constraint, that is
a dual approach that allows to find lower bounds to the optimal value of the
DCR problem.
This approach brings a troublesome variable, that in the following we name
rmin, in the objective function of relaxation and we noted that the problem
reduces to a simple shortest path problem by fixing that wild card.
To take advantage of this property, we want to perform a Benders’ decomposi-
tion on that variable, in order to find the optimum for relaxation, studying its
function point by point.
For this to be done, we need a dual vector of solution for fixed values in rmin,
in this context the Lagrangian approach, that is in fact a dual approach, can
make sense.
Anyway, if we want to find dual vectors we need the problem to have the inte-
grality property, which is not granted by some previous models for this problem
(see [1] and [4]).
Thus, we present a different formulation, with a non-linear constraint involving
the cumbersome variable rmin, which grants integrality instead.
This makes the approximating function from Benders’ decomposition non con-
vex, however, this function being mono dimensional, we can manage this sit-
uation via splitting the domain in two halves, in which we build two convex
approximation.
Hence, those remarks bring to a nested decomposition method, with a Ben-
ders’ decomposition non-convex, thus highly non-standard, at first level, taking
advantage from a Lagrangian relaxation to project the problem onto a SP struc-
ture.
This would eventually end in empirically accurate lower bounds for the general
DCR problem.
We are now handling those problems by stages, in the following paragraph (§2)
we present mathematical model underlining the constraint that lends itself to
both non-linear and linear reformulations; then in paragraph §3 we show the
Lagrangian relaxation on delay constraint and how to find primal and dual so-
lution.
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We take advantage of those in both paragraphs §4 and §5: in the first we use
primal information to find the optimal value for the multiplier λ, meanwhile, in
the latter we use mostly dual information in order to perform Benders’ decom-
position.
Finally, paragraphs §5 and §6 are dedicated to the numerical results of com-
parison between our method and a general-purpose solver and some conclusive
remarks.

First of all, let’s start describing the key elements of the graph G = (N,A), that
we assume directed, with a single source s ∈ N and destination d ∈ N\{s}.
Each node i ∈ N is characterized by a fixed node delay ni, while an arc (i, j) ∈ A
is described by its fixed link delay lij , physical link speed wij , reservable capacity
cij , and its cost fij .
We measure the amount of bits of a flow expected to enter the origin (and so
be dispatched across the network) in the time frame τ with an arrival curve
A(τ) : R+ → R+.
This is formulated as the affine function A(τ) = σ + ρ · τ , with its parameters
called respectively burst and rate, this formulation is known in literature as the
leaky-bucket arrival curve.
Moreover let L be the fixed and constant maximum transmit unit (MTU), and
δ the deadline that marks maximum acceptable delay when routing a flow.

In order to keep finite the delay along a path p, we need that

rij ≥ ρ ∀(i, j) ∈ p (1)

where rij stands for the reserved rate for a flow on the arc (i, j).
This property allows us to describe the WCD (worst-case end-to-end delay) of
a path p:

σ

min{rij : (i, j) ∈ p}
+
∑

(i,j)∈p

(θij + lij + ni) (2)

in which θij is another core element of the graph: the latency encountered on
the arc (i, j), that could be expressed in many ways depending on the scheduling
algorithm at nodes (e.g. Group Based,Weakly Rate-Proportional, and so on).
We are going to work with a Strictly Rate-Proportional (SRP) scheduling; its
name is due to its inverse relationship to the reserved rate except for an additive
term:

θij =
L

wij
+

L

rij
(3)

this scheduling enables us to ignore the global admission control, that is we can
neglect the checks needed to guarantee the feasibility of the flows previously
routed, for this formulation doesn’t depend on them.

We are now ready to start with the description of this problem as a mixed-
integer nonlinear model.
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2 Mathematical model

We now present our MISOCP model for the DCR problem.
For this, we first introduce arc-flow binary variables xij ∈ {0, 1} indicating
whether or not arc (i, j) belongs to the chosen path P, so that we can use the
standard flow conservation constraints:

∑
(j,i)∈BS(i)

xji −
∑

(i,j)∈FS(i)

xij =


−1 if i = s

1 if i = d

0 otherwise
i ∈ N (4)

those are meant to model the s-d-path requirements.
We also introduce arc reserve variable rij , and a variable rmin that represents
least reserved capacity along the chosen path.
With cmax standing for the maximum capacity of any arc in the graph, we can
add the constraints

rminxij ≤ rij ≤ cijxij (i, j) ∈ A (5)
ρ ≤ rmin ≤ cmax (6)

to ensure that rij = 0 whenever xij = 0, or that the reserved capacity stays
within the right set, if xij = 1.
Then we introduce latency constraint

σ

rmin
+

∑
(i,j)∈A

(θij + (lij + ni)xij) ≤ δ (7)

Note that the nonlinear term σ
rmin

can be expressed via the rotated SOCP
constraint, adding an auxiliary variable t:

t+
∑

(i,j)∈A

(θij + (lij + ni)xij) ≤ δ (8)

t rmin ≥ σ t ≥ 0 (9)

A further issue now is to represent the fact that θij is zero if xij = 0, while it is
given by an appropriate (convex) nonlinear expression otherwise, that is

θij =

{
L
wij

+ L
rij

if xij = 1

0 if xij = 0
(10)

It is shown in [3] that one can represent this disjunctive set in a convex way via
Perspective Reformulation technique, that bring us to the following:

θij = Lsij +
Lxij
wij

∀(i, j) ∈ A (11)

sijrij ≥ x2
ij ∀(i, j) ∈ A (12)
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trading off the simplicity of this form, with a larger number of auxiliary variables
sij .
We now have to define the objective function for our problem, that depends on
reserved rates along the path and their costs:∑

(i,j)∈A

fijrij (13)

this completes the presented model for DCR problem.
Anyway, taking a closer look to (5) constraint, we can notice that this could be
formulated in this linear form:

0 ≤ rij ≤ cijxij (i, j) ∈ A (14)
rmin ≤ rij + cmax(1− xij) (i, j) ∈ A (15)

as we heralded in introduction and we are going to explain just before dual
solution computing, this form is not fitting our purpose of solving this problem
by nested decompositions, because it doesn’t allow effective ways to find those
dual solution we need.
Hence we are going on ignoring this alternative formulation, and eventually
using it for providing the problem to the solver we are facing.
In the next paragraph we are going to set up some of the strategies for an
efficient resolution of this problem.
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3 Lagrangian relaxation

We now give a brief explanation of this procedure reporting the main theorems
that grant the properties that are involved in this work.
Let (P ) be the general integer linear programming problem

min cx s.t. (16)
Ax ≥ b (17)
Bx ≥ d (18)
xj ∈ {0, 1}, j ∈ I (19)

where A, B are matrix and b, c and d vectors of conformable dimension, and
the index set I denotes the variables required to be integer.
We distinguished two sets of constraints, because we assume that Bx ≥ d has a
special structure that makes the resolution of the problem easy.
We define the Lagrangian relaxation of (P ) relative to Ax ≥ b to be (PLλ):

min cx+ λ(b−Ax) s.t. (20)
Bx ≥ d (21)
xj ∈ {0, 1}, j ∈ I (22)

which represents a set of problems, depending on λ, each of these is a relaxation,
that is its set of feasible solutions F (PLλ) ⊇ F (P ) ∀λ ≥ 0, and its objective
function is less then or equal to that of (P ) in F (P ).
The ideal choice in λ, to make this relaxation as tighter as possible to (P ), is to
take the optimal value λ∗ of this program that we name (D):

max
λ≥0

v(PRλ) (23)

This is intimately linked to the problem (P ∗) obtained from (P ) replacing the
convex hull of {Bx ≥ d, xj ∈ {0, 1}, j ∈ I} to these constraints.
The sense of this linking is explained by these following two theorems, which
underline also the relationship between those problems and the continuous re-
laxation (P̄ ) of (P ).

Theorem 1

(a) F (P̄ ) ⊇ F (P ∗) ⊇ F (P ), F (PRλ) ⊇ F (P )

v(P̄ ) ≤ v(P ∗) ≤ v(P ), v(PRλ) ≤ v(P ) ∀λ ≥ 0

(b) if (P̄ ) is feasible, then v(P̄ ) ≤ v(PRλ̄)
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(c) if for a given λ, x satisfies the three conditions

(i) x is optimal in (PRλ),

(ii) Ax ≥ b,
(iii) λ(b−Ax) = 0

then x is an optimal solution of (P )

(d) if (P ∗) is feasible then

v(D) = max
λ≥0

v(PRλ) = v(PRλ∗) = v(P ∗)

Where λ̄ is a dual optimal solution associated with Ax ≥ b for the linear pro-
gram (P̄ ).
Moreover, if we define the integrality property to be the fact that the optimal
value of (PRλ) is not altered by dropping the integrality conditions on its vari-
able (i.e. v(PRλ) = v(PRλ)), this second theorem holds:

Theorem 2 Let (P̄ ) be feasible and (PRλ) have the integrality property, then
(P ∗) is feasible and

v(P̄ ) = v(PRλ̄) = v(D) = v(PRλ∗) = v(P ∗)

the proofs of these theorems can be found in [11].
In this setting the fact that we will end finding a lower bound for DCR problem
is now clear.
Let’s see how we calculate λ∗ and primal and dual solution for (P̄ ), given rmin,
and what a Lagrangian relaxation on the delay constraint looks like in our en-
vironment.

7



3.1 Relaxing delay constraint

First of all, here’s a short recap of our formulation, that makes it easier to
handle:

min
∑

(i,j)∈A

fijrij (24)

∑
(j,i)∈BS(i)

xji −
∑

(i,j)∈FS(i)

xij =


−1 if i = s

1 if i = d

0 otherwise
i ∈ N (25)

σ

rmin
+

∑
(i,j)∈A

(
Lxij

2

rij
+ (

L

wij
+ lij + ni)xij) ≤ δ (26)

rminxij ≤ rij ≤ cijxij (i, j) ∈ A (27)
rmin ∈ [ρ, cmax], xij ∈ {0, 1} (i, j) ∈ A (28)

Note that, despite the reformulation, still the delay constraint it’s quite trou-
blesome, for it’s non linear.
We want to multiply it for a Lagrangian multiplier λ, adding it to the objective
function to get around this issue, that turns in:

min
∑

(i,j)∈A

fijrij + λ(
σ

rmin
+

∑
(i,j)∈A

(
Lxij

2

rij
+ (

L

wij
+ lij + ni)xij)− δ) (29)

and let in the following l̄ij = L
wij

+ lij + ni.

Now, in order to solve this Lagrangian relaxation, we have to find the maxi-
mum in λ of the minimum function in (29); to do this we need both the value
of the minimum and the value of a gradient (at least an ipergradient) of the
function point by point.
Let’s handle these problems in stages, starting with finding a solution for (29)
for fixed value of λ and rmin.

3.2 Projection on Shortest Path

A very interesting remark about the latest formulation (29) is based on the
possibility of projection on a Shortest Path problem by fixing xij variables.
In fact, xij = 0, as already noted, forces us to put rij = 0 too (see (27)), while
fixing xij = 1 brings to:

min{
∑

(i,j)∈A

fijrij +
λL

rij
+ λl̄ij}+

λσ

rmin
− λδ (30)
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Calling φ(rij) = fijrij + λL
rij

, we have

φ′(rij) = fij −
λL

r2
ij

(31)

so the function decreases until it meets its minimum in v̄ =
√

λL
fij

and keeps
growing after that point.
Hence, if xij = 1, the optimal value for rij is

r∗ij =

{
cij if fij ≤ 0

min{cij ,max{rmin, v̄}} otherwise
(32)

Now we can show an equivalent formulation for (29)

λσ

r̄min
+ min{

∑
(i,j)∈A

(λl̄ij + φ(r∗ij))xij : (25) } − λδ (33)

that has a visible SP structure, with arc costs fixed to

c̃ij = λl̄ij + φ(r∗ij) (34)

Solving it by any applicable algorithm eventually gives us the optimal value of
the Lagrangian function for fixed λ and rmin.

3.2.1 SP feasibility

It can happen, and it empirically does indeed, that SP it’s infeasible for some
rmin, that is that there’s no value in λ for that rmin that grants feasibility for
SP.
That means that we can’t find any s-d-path with all reservable rates larger than
rmin.
If we imagine to delete all arcs with reservable capacity smaller than rmin, un-
feasibility means a disconnection in the graph between source and destination.
In that case we have to pick a smaller value for rmin, or in case rmin = ρ we
conclude that DCR problem was empty.
We can find the larger value in rmin that grants feasibility sorting arc capacities
vector and running a binary search on it, with a graph visit at each step.
That procedure has a non-trivial complexity, anyway it can be considered a
preprocessing procedure, that takes place only once.
In the following rµ stands for this value.

3.2.2 Computing dual solution

It takes more effort to find a dual solution for the settled Lagrangian relaxation
of DCR problem.
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In this regard, note that (27) would lend itself to a linear reformulation:

0 ≤ rij ≤ cijxij (i, j) ∈ A (35)
rmin ≤ rij + cmax(1− xij) (i, j) ∈ A (36)

we chose the nonlinear one, because carrying on dual optimum calculation we
found out that they acquire a more complicated shape in linear case; meanwhile,
as we’re about to see, nonlinear form allows us to take advantage of SP dual
solution.
This depends on the fact that non-linear reformulation matches the convex hull
of the set of feasible solutions for (29), for we’re about to show a dual solution
for the problem (37) (in which we ignored integrality on variables xij) related
to the primal integer we found via solving SPT.
That’s a desirable property, in fact almost any reasonable algorithm for SP gives
a vector of dual solutions back as a subproduct.

Before we dive in solution seeking, let’s write down again (29) in an even more
compact shape

min{h(x, r) :
[
E 0

](x
r

)
= b; D−

(
x

r

)
≤ 0; D+

(
x

r

)
≤ 0;

[
−Imxm 0

](x
r

)
≤ 0}+ g(rmin)

(37)

where

h(x, r) =
∑

(i,j)∈A

fijrij + λL
x2
ij

rij
+ λl̄ijxij (38)

g(rmin) =
λσ

rmin
− λδ (39)

while
[
E 0

]
∈ M(n, 2m,R) with E representing transition matrix for the

graph.
Moreover

D+ =
[
−diag(cij) Imxm

]
D− =

[
diag(rmin) −Imxm

]
standing for (25) and (27) constraints.

A primal-dual solution pair ((x∗, r∗), (π, µ+, µ−, η)) is optimal if KKT (Karush-
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Kuhn-Tucker) conditions hold:

∇h(x∗, r∗) +
[
E 0

]T
π +D−

T
µ− +D+Tµ+ +

[
−I 0

]T
η = 0 (40a)

µ+ ≥ 0

µ− ≥ 0

η ≥ 0

(40b)


µ+T (D+

(
x
r

)
) = 0

µ−
T

(D−
(
x
r

)
) = 0

ηT
[
−I 0

] (
x
r

)
= 0.

(40c)

In which we ignored primal feasibility conditions, already granted by SP solu-
tion.
Expanding (40a) and (40c) we get these two linear system of equations:2λL

x∗
ij

r∗ij
+ λl̄ij − πi + πj − cijµ+

ij + rminµ
−
ij − ηij = 0 (i, j) ∈ A

fij − λL(
x∗
ij

r∗ij
)2 + µ+

ij − µ
−
ij = 0 (i, j) ∈ A

(41)


µ+
ij(rij − cijxij) = 0 (i, j) ∈ A
µ−ij(xijrmin − rij) = 0 (i, j) ∈ A
−ηijxij = 0 (i, j) ∈ A

(42)

the latter it’s been simplified by imposing the same condition arc by arc.
Anyway it’s an equivalent form since that was a sum of positive terms.
Note that we assume to have access to SP dual solution d, for which holds the
useful condition {

c̃ij + di − dj ≥ 0

xij(c̃ij + di − dj) = 0
(43)

where c̃ij are the costs of arcs in SP, defined in (34).

3.2.3 Optimal dual solution for xij = 1

We start our research trying to find dual optimum when r∗ij doesn’t reach neither
of (27) margins, that can happen iff rmin < v̄ < cij , that, with regard to (32),
implies r∗ij = v̄.
In this case (42) forces us to choose µ+

ij = µ−ij = ηij = 0.
Thus, eliminating those multipliers in (41) we get for the arc (i, j)

fij − λL(
x∗ij
r∗ij

)2 = fij − λL(
fij
λL

) = 0 (44)

in the second equation, and

λl̄ij + 2
√
λLfij − πi + πj = 0 (45)
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for the first one.
Note that, for this value of r∗ij , cost of arc (i, j) in SP is c̃ij = λl̄ij + 2

√
λLfij ,

as we can check in its definition (see (34)).
In addition, SP dual second condition tells us that in this case

c̃ij = dj − di (46)

it follows that we can take πi = −di and πj = −dj with regards to KKT.
We just have to watch out for going on choosing this solution for each arc, in
fact more than one arc could start in or ends to the same node, that is we have
more conditions that nodes, so we will try to find a suitable solution for all arcs,
choosing π = −d in any situation.

Whenever r∗ij = cij 6= rmin, from (42) we have µ−ij = ηij = 0.
That implies in (40a)

fij −
λL

c2ij
+ µ+

ij = 0⇔ µ+
ij =

λL

c2ij
− fij (47)

and
2
λL

cij
+ λl̄ij − πi + πj + cijfij −

λL

cij
= 0 (48)

Again, c̃ij = λL
cij

+ λl̄ij + cijfij hence π = −d is still a workable choice.
We just have to check out (40b) condition, that is (47) is acceptable only if has
a positive value

λL

c2ij
− fij ≥ 0 (49)

For this purpose note that r∗ij = cij either if fij ≤ 0, that turns (49) in a sum
of positive terms, or if cij ≤ max{rmin, v̄} = v̄ that clearly fulfils (49).
The latter relation holds because if it wouldn’t we should have r∗ij = min{cij , rmin} =
rmin, and this is not the case.

Finally, if r∗ij = rmin we have µ+
ij = ηij = 0 from (42) and this brings us

to
µ−ij = fij −

λL

r2
min

(50)

for the first equation in (41), while the second becomes

2λL

rmin
+ λl̄ij + πi − πj + rminfij −

λL

rmin
= 0 (51)

First, let’s check out µ−ij ≥ 0, expanding this condition:

fij −
λL

r2
min

≥ 0 ≡ rmin ≥

√
λL

fij
= v̄ (52)
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r∗ij = rmin couldn’t hold unless rmin ≥ v̄, as we can check in (32), so this
condition turns out to be true.
Once again

c̃ij =
λL

rmin
+ λl̄ijrminfij (53)

and so we pick π = −d once again.
It could be easily verified that these conditions hold in case rmin = cij for some
(i, j) ∈ A too.

3.2.4 Optimal dual solution for xij = rij = 0

The function h(x, r) is no longer differentiable in (0, 0).
We can assume that h(0, 0) = 0.
Let’s now see how to generalize KKT conditions, to make them suitable in non
differentiable situation.
Restraining h to one arc, ignoring the sum

h̃(xij , rij) = fijrij + λL
x2
ij

rij
+ λl̄ijxij (54)

we can note that only the term λL
xij

2

rij
is non differentiable.

Thanks to linearity of the derivative, we can focus just on this term and look
to the form of his subdifferential (∂h̃), in which we are going to pick a gradient
to generalize (40a).
We could have done this generalization from the start, replacing (40a) with

∃v ∈ ∂h(x∗, r∗) : v +
[
E 0

]T
π +D+Tµ+ +D−

T
µ− +

[
−I 0

]T
η = 0 (55)

anyway, that would eventually bring us to the same conclusion.
In fact, whenever convexity holds, subgradient equates gradient singlet.
Thus, we restrain h even more, minding just the non differentiable term:

h̃(x, r) =
λLx2

r
(56)

Setting f(x) = λLx2, note that h̃(x, r) = rf(xr ) 1 that’s linear for fixed values
of xr .
It can be shown (see [3]) that for any couple (x̄, r̄) observing (27) and x ∈ [0, 1]m,
we have that

[∇f
( x̄
r̄

)
, f
( x̄
r̄

)
−∇f

( x̄
r̄

) x̄
r̄

] = [2λL
x̄

r̄
,−λL

( x̄
r̄

)2

] ∈ ∂h̃(0, 0) (57)

Finally, we write down (41) in the light of the above:{
2λL

x̄ij

r̄ij
+ λl̄ij − πi + πj + rminµ

−
ij − cijµ

+
ij − ηij = 0

fij − λL(
x̄ij

r̄ij
)2 + µ+

ij − µ
−
ij = 0

(58)

1that is h̃ is the perspective function of f
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Now, we have to distinguish two cases, subjecting to whether rmin ≤ cij or not.
In the first of which picking

x̄ij = 1 (59)

r̄ij =

{
cij if fij ≤ 0

min{cij ,max{r̄min, v̄}} otherwise
(60)

renews §2.2.1 environment, ignoring additional dual moltipliers (that is fixing
their value at zero).
In this case, we just act as before, while, whether rmin > cij , (27) constrains us
to (x̄, r̄) = (0, 0), that puts us in a worse situation.
In fact, in this case, those arcs didn’t belong to SP graph, opening up the
possibility of some nodes disconnection.
That would cause SP dual value for those nodes to be +∞.
Anyway, let’s write (58) for (x̄, r̄) = (0, 0){

−πi + πj + rminµ
−
ij − cijµ

+
ij − ηij = 0 ∀(i, j) ∈ A

µ+
ij − µ

−
ij = 0 ∀(i, j) ∈ A

(61)

this second relationship establishes µ+
ij = µ−ij , which we refer to as simply µij .

Hence, let’s replace it in the first equation:

− πi + πj + (rmin − cij)µij − ηij = 0 (62)

in which we remind that rmin > cij .

What to do when di = dj =∞

That could seem the easiest setting, for we’re free to choose the values of our
wild cards, but we have to watch out for the usual trouble: πi definition has to
be common for more arcs, so we have to find a common suitable definition.
Let’s try to choose πi = 0 whenever di = +∞.
In this particular case that can, for instance, drive us to µij = ηij = 0, despite
there’s plenty of affordable possibilities.

What to do when we defined just one SP dual label

This case forces to annihilate the other label.
Hence, if di = +∞, we choose πi = 0, while πj = −dj , obtaining in (62)

− dj + (rmin − cij)µij − ηij = 0 (63)

note that dj ≥ 0, so ηij = 0 and µij =
dj

rmin−cij works, for they’re both non
negative.
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Instead, when dj = +∞ (⇒ πi = −di), we have

di + (rmin − cij)µij − ηij = 0 (64)

and µij = 0 and ηij = di is still a reasonable and correct choice.

What to do when both SP dual solution are defined

This situation could happen indeed, if those nodes are linked by some other
SP-arcs to the remaining part of the graph.
Hence (62) becomes

di − dj + (rmin − cij)µij − ηij = 0 (65)

but now we have no information on the number di−dj , for this is no longer the
potential difference of the edges of (i, j).
Hence, we have to find a solution according both their possible signs:
when di − dj ≥ 0, we choose ηij = di − dj and µij = 0.
Meanwhile, if di− dj < 0 a feasible choice would be ηij = 0 and µij =

dj−di
rmin−cij .

All we’ve stated by now fulfils dual solution seeking.
Now we want to shed light on what happens when λ and rmin are free to change
their values.
We are going to handle this variation one wild cards from these two by one,
starting from λ.
Note that this choice isn’t mandatory, we could also reverse this order, but these
way seemed much more auspicious.
That’s because, as we’re about to see in further paragraphs, this keeps the more
unusual behaviour of rmin variation in the more external loop of the discussed
algorithm.
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4 Inner loop: finding an optimal multiplier λ

With the knowledge of primal and dual solution (for fixed λ, rmin) for

p(λ) = min
(x,r)
{h(x, r) + g(r̄min) : (25), (27), (28)} (66)

we’re going to show how to solve

max{p(λ) : λ ≥ 0} (67)

- that is Lagrangian dual of DCR problem due to relaxation of (26) constraint
- via gradient method.
That knowledge obviously grants us the point-by-point value for (66), we refor-
mulate p definition so that we can exploit SP solutions, in order to find one of
its ipergradient in that point too.
For this purpose, we define

β(x, r) =
σ

r̄min
− δ +

∑
(i,j)∈A

Lx2
ij

rij
+ l̄ijxij (68)

α(x, r) =
∑

(i,j)∈A

fijrij (69)

Note that β equals LHS of (26), while α is the objective function for DCR.
However, with those terms we can write

p(λ) = min
(x,r)
{α(x, r)+λβ(x, r) : (25), (27), (28)} = α(x(λ), r(λ))+λβ(x(λ), r(λ))

(70)
in which for fixed λ = λ̄, (x(λ̄), r(λ̄)) stands for primal solution of SP, with
usual definition of arc’s costs (34) for that value in λ.
This reformulation underlines point-by-point value for p(λ̄) derivative, that,
from the latter relation, we can easily check to be β(x(λ̄), r(λ̄)).

For algorithm to start, now we just need two points: one with a positive value
for the ipergradient, and another with ipergradient of opposite sign, from which
line search could eventually start.
For this, first we check β(x(0), r(0)), provided this turns out to be non positive,
we’ve already found our optimal solution: λ∗ = 0.
Otherwise we look for the point with negative ipergradient on the sequence{

λ0 = 1

λi+1 = 2λi
(71)

for this to be achievable, we need a stop condition, that is we have to be aware
of the existence of a point where we can stop our seeking, figuring out dual to
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be unlimited.
An upper bound for that point can be easily built by computing an upper bound
for worst DCR solution, check this formulation out:

max{
∑

(i,j)∈A

fijrij : (25), (26), (27), (28)} (72)

This is DCR thought as a maximum cost routing problem, its value in optimum
has the property to be larger of any feasible solution for our actual problem.
Moreover, for it’s a maximum cost problem, the property to be a valid upper
bound holds for each relaxation of (72).
Thus, we can ignore all constraints except box ones:

max
∑

(i,j)∈A

fijrij (73)

r̄minxij ≤ rij ≤ cijxij (i, j) ∈ A (74)
xij ∈ [0, 1] (i, j) ∈ A (75)

which striking solution is the one that saturates positive cost arcs, and ignores
other ones:

(x̂ij , r̂ij) =

{
(0, 0) if fij ≤ 0 o r̄min > cij

(1, cij) otherwise
(76)

its cost
z =

∑
fij>0

cij≥r̄min

fijcij (77)

is the upper bound we needed, in fact, at any point λi, p(λi) is a lower bound
for DCR optimal value.
Hence, whenever for some i p(λi) > z holds, we can state primal problem to
be empty, and we have to change rmin value, which wasn’t within feasibility
interval.

4.1 Procedure for finding optimal multiplier λ∗

We found all the ingredients for gradient method, its procedure is quite simple
at this point.
We start with two ipergradient, in each iteration we get their interception and
calculate value and ipergradient for dual function, unless in λ = 0 we discovered
a negative slope yet, which makes us stop, as already noted, with λ∗ = 0 .
This new ipergradient replaces one of the old ones, consistently with its sign
(the one with same sign for the slope).
For new interceptions must stay within the interval between the two previous
ones, this method’s clearly convergent.
We are shutting its running down when relative distance from the value of the
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approximation given by gradient interception to the actual dual value in that
point becomes lesser that a set accuracy ε.

In paragraph ending we suggest some ways to reuse information resulted by
running this method.

4.2 Reoptimizing

We are going to discuss in further paragraph rmin variation, hence, discover
whether some cuts that we generate in the gradient method still work for a new
rmin value is really useful.
A sufficient condition for them to be still effective ipergradient of our function
p is that the primal solution related to them is still feasible.
Note that the only constraint that could violate this feasibility is (27).
Hence, the only check we need is that rij(λ) ≥ r̂min for all arcs in optimal path,
where r̂min is its new value.
Checking this condition for all optimal solution of all the visited cuts, will ends
up in finding a subset I ′ ⊂ I of the set I of all feasible solution for our dual
problem.
If there’s a couple of those solution that pass that check with discordant slopes,
we can use them to start our gradient method, skipping some preprocessing.
Moreover, every time we find a negative slope cut we gain an even more inter-
esting condition.
In fact, as we noted, β represent both slope of ipergradients and the LHS of
(27) constraint, that means that for each negative β we found a primal feasible
solution, that is one that verifies

σ

r̄min
+

∑
(i,j)∈A

Lx2
ij

rij
+ l̄ijxij ≤ δ (78)

This on one hand grants that primal problem’s not empty, on the other it allows
us to set up an heuristic method, with no more computing needed.
For each new rmin we run this method, and we want to save the best (the
cheaper one) primal feasible solution found concurrently with point in λ with
negative slope, that is making us discover empirically good upper bound to DCR
optimal value, with no adding effort needed.

Now that we’re able to find optimal solution in λ for fixed values in rmin,
we discuss this wild card’s variation.
To do this, we present a highly non-standard Benders’ decomposition, that takes
advantage from dual optimal solution we calculated in §3.2, to build up partially
convex approximations of Lagrangian objective function.
Let’s proceed step by step, showing how to calculate those approximations and
how to use them to eventually find an optimal solution for our Lagrangian re-
laxation.
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5 Benders’ decomposition

As we did in §3, we start this paragraph giving a brief explanation of the Ben-
ders’ decomposition.
This is a useful method whenever we have to face a problem of the form

max
x,y

f(x, y) s.t. G(x, y) ≥ 0, x ∈ X, y ∈ Y (79)

where y stands for a set of variable complicating the solution, G is a vector of
constraint functions defined on X × Y .
What we want to do is a projection onto y-space:

max
y

v(y) s.t. y ∈ Y ∩ V (80)

where
v(y) = sup

x
f(x, y) s.t. G(x, y) ≥ 0, x ∈ X (81)

and
V = {y : G(x, y) ≥ 0 for some x ∈ X} (82)

Given y, computing v(y) should be easy, and in our setting we already found a
solution for this problem, for y = rmin is our only complicating wild card.
Let (1-y) be the problem

max
x

f(x, y) s.t. G(x, y) ≥ 0 (83)

the following theorems underline some interesting properties of this projection,
for their proofs and further explanation see [9]-[10].

Theorem 3 (Projection) Problem (79) is infeasible or has unbounded opti-
mal value iff the same is true of (80). If (x∗, y∗) is optimal in (79), then y∗

must be optimal in (80). If y∗ is optimal in (80) and x∗ achieves the sup in
(81) with y = y∗, then (x∗, y∗) is optimal in (79).

Theorem 4 (v-Representation) Assume that X is a nonempty convex set
and that f and G are concave on X for each fixed y ∈ Y . Assume further that,
for each fixed ȳ ∈ Y ∩ V , at least one of the following three conditions holds:
(a) v(ȳ) is finite and (1-ȳ) possesses an optimal multiplier vector;
(b) v(ȳ) is finite, G(x, ȳ) and f(x, ȳ) are continuous on X, X is closed, and the
ε-optimal solution set of (1-ȳ) is nonempty and bounded for some ε ≥ 0;
(c) v(ȳ) = +∞.
Then, the optimal value of (1-ȳ) equals that of its dual on Y ∩ V , that is,

v(y) = inf
u≥0
{sup
x∈X

f(x, y) + utG(x, y)}, ∀y ∈ Y ∩ V
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Hence, under these assumptions we can write the master problem of Benders’
decomposition, that is an equivalent formulation for (79):

max
y∈Y ∩V

{ inf
u≥0
{sup
x∈X

f(x, y) + utG(x, y)}} (84)

We want to apply this formulation to our Lagrangian relaxation in order to
handle the complicating variable rmin.

5.1 Decomposing DCR problem

We start presenting a Lagrangian relaxation of (37) on each constraint:

max
(π,µ+,µ−,η)

{min
(x,r)
{h(x, r) + µ+T (D+

(
x

r

)
) + µ−

T
(D−

(
x

r

)
)

+ ηT
[
−I 0

](x
r

)
+ πT (

[
E 0

](x
r

)
− b)}}

(85)

µ−ij ≥ 0, µ+
ij ≥ 0, ηij ≥ 0 ∀(i, j) ∈ A. (86)

where we multiplied each of them for a Lagrangian multiplier and we added it
to objective function.
In order to lighten this hard notation, we define θ = (µ+, µ−, π, η) and q(θ, x, r, rmin)
as the function inside the minimum on the couple (x, r).
We are ready for our first formulation of master problem of Benders’ decompo-
sition, where we think to rmin as our only complicated variable:

min
rmin

{g(rmin) + max
θ≥0
{min

(x,r)
{q(θ, x, r, rmin)}}} (87)

rmin ∈ [ρ, rµ] (88)

where we recall g function’s definition to be g(rmin) = λσ
rmin

− λδ.
We can already reformulate (87)-(88) taking advantage from maximum function
properties:

min
(r0,rmin)

r0 (89)

r0 ≥ g(rmin) + min
(x,r)
{q(θ, x, r, rmin)} ∀θ ≥ 0 (90)

rmin ∈ [ρ, rµ] = V (91)

renaming rmin = z, to underline the difference between rmin wild card on which
we’re finding minimum in (87) and fixed value r̄min, in which we computed lat-
ter iteration.
That’s helping us, because what we want to do now is calculate dual vector of
solutions θ̄ for some fixed r̄min and use it for computing min(x,r){q(θ̄, x, r, z)}.
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The point of this is that if we pretend that a certain θ̄ ≥ 0 wouldn’t change ac-
cording with z, computing RHS of (90) for that fixed θ̄’s returning us a function
that has the property to stay within Lagrangian objective function ipograph.
Building these functions for different points - hence different dual vectors - and
taking the maximum among them, shapes an approximation of the function of
Lagrangian dual problem, that improves as the amount of points grows.
The minimum value of this approximation is a valid lower bound for the min-
imum of our Lagrangian problem, so we keep on improving this bound until
whether we reach the set accuracy or we realize that we can improve it no more.
As usual, let’s proceed gradually, figuring out, first of all, how to build that
function up for some fixed r̄min and θ̄.

5.2 Computing min(x,r){q(θ̄, x, r, z)}

This is how it looks q expanded form:

q(x, r) =
∑

(i,j)∈A

(fijrij +
λLx2

ij

rij
+ λl̄ijxij + µ+

ij(rij − cijxij)+

+ µ−ij(zxij − rij)− ηijxij − πixij + πjxij)−
∑
i∈N

πibi

(92)

where we ignored the fact that q depends on θ and z, because we’re going to
think to the first as a constant term, and to the second as a parameter.
The following is the gradient in (x, r) of our function (quite familiar as one could
note, see (41)):{

2λL
xij

rij
+ λl̄ij − µ+

ijcij + zµ−ij − ηij − πi + πj = 0 (i, j) ∈ A
fij − λL(

xij

rij
)2 + µ+

ij − µ
−
ij = 0 (i, j) ∈ A

(93)

The term xij

rij
prevents us to minimize this function separately on x and r, any-

way we can surely work arc by arc, because arc contribution doesn’t depend on
the one from other arcs.
We now review each potential behaviour of θ, according with what we saw in
§3.2.

Whenever we choose µ−ij = 0, each term depending on z annihilates in (93),
so its value can’t influence where the minimum of the function is located.
We already knew that KKT grants optimality for (x∗, r∗) whether z = r̄min,
hence, in this case, this’d hold when z is moving too.
Thus, the only case that we didn’t solve yet is the one with µ−ij 6= 0, that is
when

v̄ ≤ r̄min ≤ cij (94)
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where we have that µ+
ij = ηij = 0, while πi = −di, πj = −dj (or zero if SP

labels equal +∞) and µ−ij = fij − λL
r̄2min

.
If we replace their values in (92), we find

λL
x2
ij

rij
− λL z

r̄2
min

xij + λL
rij
r̄2
min

+ fijzxij + λl̄ijxij + (di − dj)xij (95)

while, if we put them in (93), we get{
2λL

xij

rij
+ λl̄ij + z(fij − λL

r̄2min
) + di − dj = 0

−λL(
xij

rij
)2 + λL

r̄2min
= 0

(96)

this second condition gives us

− λL(
xij
rij

)2 +
λL

r̄2
min

= 0⇔ (
xij
rij

)2 =
1

r̄2
min

⇔ xij
rij

=
1

r̄min
(97)

that we place in the first one, obtaining

2
λL

r̄min
+ λl̄ij + z(fij −

λL

r̄2
min

) + (di − dj)
rij
r̄min

= 0 (98)

it seems clear that this latter equation equals zero just for some values in z,
while we wanted this to hold all the way through its variation.
Another issue is that, as one may note, some (xnij , r

n
ij) sequences do exist along

which q tends to −∞.
This bothersome situation is due to the complete unboundedness of the formu-
lation of the Benders’ master problem in (87).
In order to avoid this issue, we try to do the same steps in a midterm Lagrangian
relaxation, in which we make some of the terms in objective function go back
to their constraint role.

5.3 Midterm Lagrangian relaxation

In our attempt to restore some constraint, we choose the ones that ensure the
set within r can change to be bounded, that is box constraints (27)-(28)

min
(xij ,rij)

∑
(i,j)∈A

(fijrij + λL
x2
ij

rij
+ λl̄ijxij + dixij − djxij)−

∑
i∈N

πibi (99)

xijz ≤ rij ≤ cijxij (100)
xij ∈ {0, 1} (101)

from now on, q refers to this function, and Benders’ master problem too shifts
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to:

min
(r0,rmin)

r0 (102)

r0 ≥ g(rmin) + min
(x,r)
{q(θ, x, r, rmin) : (100), (101)} ∀θ ≥ 0 (103)

rmin ∈ [ρ, rµ] = V (104)

note that the sum on nodes is a constant shifting term, thus it’s irrelevant to
the minimum of the function, we explicit its value and put it away by now.
Here it’s a recap of b definition:

b =


−1 if i = s

1 if i = d

0 otherwise
(105)

while π can be either the opposite of dual SP labels, whenever they’re finite, or
0, so that sum equates

−
∑
i∈N

πibi = dd − ds = dd (106)

for s is the source of the graph, and its label’s automatically zero.

After this, we can start searching the minimum in (99)-(101).
Note that we can still work on the minimization arc by arc, moreover if xij = 0
it implies rij = 0, and q(0, 0) = 0.
Hence, we want to figure out what happens when xij = 1, and this would even-
tually be the optimal choice in xij if the minimum turns out to be a negative
value.
Working arc by arc lets us ignore indices, thus that’s how our problem looks
like

φ(z) = min
(x,r)
{fr +

λLx2

r
+ λlx+ dx | xz ≤ r ≤ cx, x ∈ {0, 1}} (107)

That annihilates for x = 0, as we noted.
When x = 1 instead, this is the function that we have to explicit

φ(z) = min
r
{fr +

λL

r
+ λl + d | z ≤ r ≤ c} (108)

5.3.1 Minimizing within particular-case condition λ = 0

With this extra condition on λ, the problem becomes quite simple

φ(z) = min
r
{fr + d | z ≤ r ≤ c} (109)
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in fact, minimizing function is a line that meets x-axis in the point p = − d
f .

Line is clearly strictly increasing, as such we pick lower value in r with re-
gard to the only constraint, that is: r = min{z, c}.
Thus, φ(z), when λ = 0, equals

φ(z) =

{
fz + d se z ≤ min{p, c}
0 se z > min{p, c}

(110)

That definition preserves continuity if min{p, c} = p, while it doesn’t when that
minimum equals the capacity of the arc, that would end up in a jump from
negative value fc+ d to zero in that point.
In both cases this is a piecewise linear function, that isn’t differentiable where
it changes definition.
This function is both convex and concave along its two pieces, it’s globally
concave in case min{p, c} = p.

5.3.2 General case

We now give a similar formulation for φ(z), assuming λ > 0.
First of all, we want to figure out where is located the minimum in r when
x = 1, and if it returns a negative value for the function.
If h(r) stands for the minimizing function, its gradient is

h′(r) = f − λL

r2
(111)

that vanishes in ±v̄ = ±
√

λL
fij

, thus it has a minimum in a positive point, and
a negative point of maximum.
Subjecting our function to its constraint, we find that the optimal value for r is
r = min{c,max{v̄, z}}.

Now we want to discover whether in this points h(r) equals a positive value,
finding its roots and comparing them with that point.
This brought us to this equation

fr +
λL

r
+ λl + d = 0 (112)

it seems clear that we can assume r > 0, and multiply that relationship for its
value, finding a quadratic equation

fr2 + (λl + d)r + λL = 0 (113)

Hence, h roots are

ζ± =
−λl − d±

√
(λl + d)2 − 4fλL

2f
(114)
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when the topic of the square root is non negative, or none.
If that function doesn’t annihilates, computing it’s limits in 0 and +∞, that are
both +∞, assures us that the function is non negative in its minimum point,
and we pick φ(z) = 0.
Otherwise, if those roots exist and their value is positive, we have that

ζ− ≤ v̄ ≤ ζ+ (115)

We are ready to define general-case φ function:

(i) If h(r) doesn’t vanish ⇒ φ(z) ≡ 0

(ii) If ζ± exist positive and v̄ ≤ c

φ(z) =


fv̄ + λL

v̄ + λl + d if z ≤ v̄
fz + λL

z + λl + d if v̄ ≤ z ≤ min{ζ+, c}
0 if z > min{ζ+, c}

(116)

(iii) If ζ± exist positive and v̄ > c and ζ− < c

φ(z) =

{
fc+ λL

c + λl + d if z ≤ c
0 if z > c

(117)

(iv) If ζ± exist positive and v̄ > c and ζ− ≥ c ⇒ φ(z) ≡ 0

let’s take a closer look to (ii) and (iii) cases.
In the first one the function starts with a constant negative value and null value
in derivative, until it reaches the point v̄.
After that point the dependency on z becomes explicit, and the gradient of the
function is now positive, as we can check in (111).
In that point both the function and its gradient are continuous and, despite it
switches definition, that point preserves convexity, that’s because the function
changes definition exactly in its minimum.
After that it changes definition again in min{ζ+, c}.
If that point equals ζ+ the function is still continuous, but this time its gradient
becomes null after a positive stretch, hence our function is no more convex.
When min{ζ+, c} = c both continuity and convexity can’t hold, in fact the func-
tion behavior is similar to λ = 0 case: it grows until the point c where it jumps
to null value both for function and its gradient (therefore it decreases).

Finally in case (iii) the function starts with negative constant value to jump
to zero when it reaches the right edge of the constraint.
In this case we have a two-pieces linear function, both convex and concave.

This concludes the analysis of approximating function for fixed r̄min and θ̄.
We end this paragraph noting that at r̄min the function has always a null value.
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That’s due to SP dual conditions, that states that potential difference at the
edges of an arc is smaller then the arc’s cost:

c̃ij ≥ dj − di = −d ≡ d ≥ −c̃ij (118)

where c̃ij depends on r∗ (see (32) and (34)), that depends on r̄min.
We now define

ψ(t) = ft+
λL

t
+ λl = h(t)− d (119)

note arc cost to be exactly equal to ψ(r∗).
If we define r(z) = min{c,max{v̄, z}} the optimum found in previous analysis,
we can read dual SP condition as

h(r(z)) = ψ(r(z)) + d ≥ ψ(r(z))− ψ(r∗) (120)

Note that ψ(t) increases in [v̄,+∞), where both r(z) and r∗ lay, thus, for r(z) ≥
r∗ ∀z ≥ r̄min, in (120) we have

h(r(z)) ≥ ψ(r(z))− ψ(r∗) ≥ 0 (121)

that easily implies φ(r̄min) = 0.
This is an useful property, because from r̄min on our approximation is certainly
convex.
Now, we want to find a convex approximation for the first part of the function,
in order to have an at worst two-pieces convex global approximation for Ben-
ders’ master problem.
That allows us to perform a double line search to handle the maximum function
in (87)-(88), in the subintervals [ρ, r̄min] and (r̄min, rµ] of V = [ρ, rµ].

5.3.3 Convex approximations for φ

In this paragraph we face the issue of finding a convex approximation, shaping
φ in a certain interval [z, z̄].
For our purpose we can assume z > 0, and z̄ = r̄min, that’s based on latter
ending paragraph remark.
This may bring us to quite loose approximation, anyway in this way we found
a point that’s common to all arcs in graph.
If we want a more strict approximating function, we should section V in cij
and ζ± too, but we have that those points depends on the features of arcs, thus
we could need a 3-points per arc partition of our feasibility set V , that quickly
becomes too difficult to handle.

Finding a convex approximation means to review all φ forms according with
the value of λ.
We start finding one for λ = 0, we recap that this implies φ to be a piecewise
linear function.
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In this case we intuitively cut off non convexity point, taking in (v̄, φ(v̄)) the
linear shortcut to (r̄min, φ(r̄min)).
It could happen that this shortcut crosses our function, in that situation we
want to increase its slope, picking the (c, φ(c))-(r̄min, φ(r̄min)) linear worse ap-
proximation.
This concludes this easier case, let’s have a look to the more general λ > 0, that
is cases (ii) and (iii) in §5.2.2.
Linear shortcut still tempts us, but we have to grant its feasibility.
In case (iii) this is quite simple: the function is a two null slope pieces function,
so it seems obvious to make it convex by linking (c, φ(c)) to (r̄min, φ(r̄min)) with
a line.
Case (ii) is more troublesome, φ is convex in [0,min{ζ+, c}], but shortcut is
surely no longer consistent, for, in v̄, φ changes definition and starts increasing
with punctual null slope.
Hence, we have to lower our shortcut in order to force it to remain in ipograph
of φ.
A way to do this is finding a suitable ε that makes affordable the linking between
(v̄ + ε, φ(v̄)) and (r̄min, φ(r̄min)), we define it r.
This could be done by picking the lines passing trough (r̄min, φ(r̄min)) and forc-
ing them to have just one intersection with the curve part of φ in [v̄,min{ζ+, c}].
The r linking is characterized by its slope and its y-axis intersection:

m =
φ(v̄)− φ(z̄)

v̄ + ε− z̄
(122)

q = φ(z̄)− z̄m (123)

that we ask for equaling φ:

fz +
λL

z
+ λl + d = mz + q (124)

multiplying for z, that we can assume to be positive, we get

(f −m)z2 + (λl + d− q)z + λL = 0 (125)

We now impose that its discriminant vanishes

(λl + d− q)2 − 4(f −m)λL = 0 (126)

and we replace here q, to underline the fact it depends on m

(λl + d+ z̄m)2 − 4fλL+ 4fmλL = 0 (127)

defining β = λl + d and expanding quadratic term we have

z̄2m2 + (2βz̄ + 4fλL)m− 4fλL+ β2 (128)

solving it in m eventually brings us to

m± =
−2βz̄ − 4fλL±

√
(2βz̄ + 4fλL)2 − 4z̄2(β2 − 4fλL)

2z̄2
=

−βz̄ − 2fλL±
√

2fλL(2fλL+ βz̄ − 2z̄2)

z̄2

(129)
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That’s not an handling solution for sure, in addition to its potential issues in
definition, and the unexpected two solutions ending.
Thus, we want to try another way to build our convex bound.

5.3.4 Alternative consistent bounds for ε

We present two supplementary ideas to build convex approximation.
The first is based on trying to force the shortcut to become valid, via lowering
it down until it reaches the tangent point with φ.
Alternatively we can check the slope that φ reaches in min{ζ+, c, z̄} and choose
among the lines passing through z̄ the one with that slope.
Those suggestions seem to decrease the accuracy of our bound, anyway we carry
out calculation in both ways, to see if we can find an acceptable compromise
between accuracy and ease.

We start with the first idea; this is the formulation for shortcut:

s(t) = mst+ qs =
φ(v̄)

v̄ − z̄
t− z̄ms (130)

while φ reaches its slope in the point that grants

φ′(z) = h′(z) = f − λL

z2
= ms (131)

that is

ẑ =

√
λL

f −ms
(132)

Thus we can write the formulation for our linear convex approximation:

ŝ(t) = mst+ φ(ẑ)−msẑ (133)

Note that, for this to be defined, we need ms < f .
This doesn’t hold when shortcut has already a larger slope than φ one at each
point.
In this situation we want to simply lower down shortcut until the point that
makes φ change definition: min{ζ+, c, z̄}; that turns out to be a consistent
bound again.

As regards the second idea, the slope that φ has in min{ζ+, c, z̄} equals

h′(min{ζ+, c, z̄}) = f − λL

(min{ζ+, c, z̄})2
(134)

thus, our approximation is the line passing through (z̄, φ(z̄)) = (r̄min, 0) with
that slope:

r(t) = h′(min{ζ+, c, z̄})t− z̄h′(min{ζ+, c, z̄}) (135)
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In view of our calculation the first idea in this latter paragraph seems to be
quite up-and-coming, being careful not to let discontinuity that it produces in
r̄min take over.

It follows a brief look to other possibilities for the choice of our midterm re-
laxation, before we explore what happens to our approximation adding each
arc’s contribution and the terms g(z) and dd, that we ignored so far.

5.3.5 Further alternative versions for midterm Lagrangian relax-
ation

The idea on which our midterm relaxation is based is that the set, where the
variables of the problem can move, becomes too easily unbounded.
There are different formulation to avoid this issue, each relying on confining r
in a bounded set.
Some of these could eventually bring to easier approximation, with different
properties, thus we sort through some of them, hoping we could find a global
convex approximation for Benders’ master problem.
One interesting idea, for example, is to keep total relaxation formulation, such
as in (92), and finally add redundant constraint ρxij ≤ rij .
We move on those calculation in order to avoiding burden this treatment, espe-
cially because this turns out to be a non convex formulation.
We decided to underline this possible way for it frees constraint’s depending
on z and reduced the approximation to a piecewise linear form, such as λ = 0
previous case.
Anyway, we discarded this path for it doesn’t guarantee an important property:
the fact that in r̄min all arcs certainly end their contributions, allowing us to
build up a two pieces convex function.
That implies that we need to partition the V interval in a whole bunch of subin-
terval in which function is convex, or at least exploring all non convexity points
to build a global convex bound.
This end in a worse issue that is that the function could be no longer tangent
to Benders’ master problem one, significantly threatening our bound’s accuracy.

We cross over this analysis by showing some possible shapes of DCR prob-
lem’s objective function.
Those are built by interpolation on its values computed on a dense partition of
the feasibility set V .
Those in particular refer to graphs with more than 4000 arcs (up to 9500).
Note that we record lack of global convexity and potential discontinuity in ob-
jective function yet.
That remark made us desist from further investigation in potential global con-
vex bound.
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(c) (d)

(e) (f)

Figure 1: Changing forms for objective function of DCR problem
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5.4 Complete formulation for approximating function

What we’ve done so far was studying single arc contribution to our approxima-
tion to Benders’ master problem, with r̄min, thus θ̄, fixed, thinking at z as a
parameter.
Then we simplified it by taking a further piecewise linear and convex lower
bound for it; hence now we are ready to put those contributions together, adding
constant terms and g(z), to discover what our complete approximation looks
like.
In this purpose, let Φ be RHS function in (102) for fixed θ, that is

Φ(z, r̄min) = g(z) + min
(x,r)
{q(θ, x, r, z) : (100), (101)} (136)

We now add indices to our previous study, calling φij the approximating function
we found in §5.2 for the arc (i, j).
Thus, what we’ve done so far can be summed up as

Φ(z, r̄min) = g(z) + dd +
∑

(i,j)∈A

φij(z, r̄min) (137)

This is a valid lower bound for general objective function in master problem,
which has, as we noted, bunches of points were convexity and even continuity
don’t hold, up to three per arc.
By evaluating that function in z = r̄min, it equals Lagrangian optimal value,
thus in that point it matches the actual master problem’s function, which allows
θ to change with regard to rmin variation instead.
In order to avoid issues that non convexity could arise, we already built a further
lower bound, that is the one we discussed in §5.2.3.
Those functions, which we refer to as φ̃ij , keep on matching the master problem
function in z = r̄min, in addition they’re convex in the two intervals [0, r̄min]
and (r̄min,+∞], which is a seriously auspicious property.
Thus, following property holds for those functions:∑

(i,j)∈A

φij(z) ≥
∑

(i,j)∈A

φ̃ij(z) ∀z ∈ V (138)

hence we can replace them in Φ definition, building a quite more loose approx-
imation, yet it grants the useful properties we just underlined.
This put an end of issues due to the contributions of arcs.
What we have to do now is analyse remaining term:

g(z) + dd =
λσ

z
− δ + dd (139)

where dd is constant shifting that we actually can ignore, for we are now focusing
on convexity.
Our last term g(z) = λσ

z − δ is strictly decreasing for z > 0, and it’s convex.
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Thus, what’s happening here is that the derivative of Φ starts with the value g(z)
plus the non-negative contributions by arcs, that is constant for their objective
function is piecewise linear.
Those arcs who are already contributing in z, are going to keep acting in this
way, until z reaches r̄min, where all contributions from arcs vanish.
Meanwhile the ones that start with null contribution could pass all the way
through in z without changing their derivative contribution, or activate in some
point before they reach r̄min.
If it’s so, they are remaining constant, after their sudden turning on, until they
annihilate in r̄min.
Thus arcs can produce sudden variation of Φ derivative, but whenever they do
change it, they increase its value by a fixed non negative amount, hence their
contribution preserves convexity as long as z ≤ r̄min.
After that point the derivative of Φ equals g(z)+dd, that is a convex decreasing
function, thus we eventually built our two-pieces convex approximation.
This can be summed up in

Φ(z) =

{
g(z) + dd +

∑
(i,j)∈A φ̃ij(z) se z ∈ V1

g(z) + dd se z ∈ V2

(140)

where V1 = [z, r̄min] and V2 = (r̄min, z̄].

Now we can finally have a closer look to Benders’ procedure.
Before that, though, we take advantage from convexity for last simplification
step, that will hopefully clarify why two-pieces convexity was such a compelling
necessity too.
In fact, for convex function, we have that local gradient is a global lower bound
for the function itself.
Thus, what we want to do is replacing Φ with two lines which slope’s given by
its right and left derivative in r̄min:

Φ′+(r̄min) = lim
z→r̄+min

Φ′(z) = − λσ

r̄2
min

(141)

Φ′−(r̄min) = lim
z→r̄−min

Φ′(z) = − λσ

r̄2
min

+
∑

(i,j)∈A

φ̃′ij(r̄min) (142)

that we’re using in its place in the following procedure, given their ease.

5.5 Procedure for Benders’ decomposition

First of all, a core issue for this decomposition to be performed is finding the
set V of rmin values that grants feasibility, which we briefly discussed in §3.1.1.
Just to remind what we said then, we want to sort arc capacities vector in
seeking for minimum value for which feasibility doesn’t hold and that would be
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the right edge of V .
Empirically one can become aware that ρ is actually a lower bound for the left
edge in many realistic situation.
We can improve that bound noting that, for the problem to be feasible, we need
to find a negative slope while looking for λ optimal value, that is, as we can
check in §4, finding a λ and a related (x, r) solution for

β =
σ

rmin
− δ +

∑
(i,j)∈A

Lx2
ij

rij
+ l̄ijxij (143)

to be negative.
Sum being a positive term one, for β to become negative, we need that

σ

rmin
− δ ≤ 0 (144)

That is
rmin >

σ

δ
(145)

Thus we can lift up V left edge by asking rmin for being greater than max{ρ, σδ }.
This is actually the point we picked in implementation, adjusting it by convex
combination between lower known feasibility point and that edge, all the time
we come across any non feasibility.

In case-study iteration we start building our piecewise linear function Φ for
a certain fixed value r̄min.
Then we split V in two part V1, V2, separated by r̄min.
We save each linear part of Φ in its natural interval, where it represents a lower
bound for Benders’ function.
Thus we just have to manage how to run a line search on each subinterval
already set at this time, finding the minimum among the maximum function
formed by those linear cuts that belong to that certain interval.
We’re taking the minimum value point among the minimal value points line
search brought to light.
This would eventually be our new point, in which we start again building Φ
function.
This method is clearly convergent, for it is so on single subintervals.
We have two stop conditions: one is optimality, that is when the gap between
new point value on approximation and its value on actual objective function
stays within a chosen accuracy ε.
The other one is satisfied whenever we already solved the problem, and then
built Φ, for a new value, that is we’re visiting again one point, that implies that
we can no longer improve our lower bound.

We implemented and tested this whole algorithm and we’re about to emphasize
its behaviour by comparing it with the one of a general purpose solver, in the
next paragraph.
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As we’re seeing this method finds often a solution that is not just Lagrangian
relaxation one, but that matches general DCR problem optimality.
Before that we take a moment to talk about the heuristic and the ideas we
analysed in order to reuse some computed information and optimize this latter
procedure.

5.6 Heuristic and re-optimization

In running the so far outlined procedure, we want to save best primal feasible
solution, as we remarked in §4.2.
Anyway, if we’re just concerned about an upper heuristic bound, we can strongly
simplify the approximation we proposed in §5.2.3.
In fact, in this case, we can let the approximating function passing through the
general objective function, trading off potential looseness of our bound, with
more ease in computing it.
For example, this situation enables to always chose the shortcut we talk about
in §5.2.3 (that is the line from (v̄, φ(v̄)) to (r̄min, φ((r̄min))), which ends in a
clear facilitation, preserving both convexity and continuity for approximating
function.

Anyway, whether we’re just concerned about upper bound or both upper and
lower bounds, there exists some method to quickly cut off unpromising branches
of V .
For instance, anytime the line search returns the new value, from which we start
the next iteration, this can be used for further branching.
In fact the minimum value of the maximum function among linear cuts is cres-
cent with respect to the operation of adding more cuts.
This guarantees that anytime we find a solution for line search in a subinterval
that is lower than this bound, that subinterval can be ignored henceforth, be-
cause it could provide just larger valuated points, thus the minimum of Benders’
function cannot be located in that branch.

A subtler an more promising condition is due to both empirical findings and
theoretical remarks: it happens in many situations that minimum value is lo-
cated before a descending stretch in which Lagrangian multiplier λ assumes
continually zero as optimal value.
Let’s have a closer look to what happens in this cases.
First of all our right cut, as one can check in (141), has null slope whenever
λ = 0.
Left cut assumes a non-negative value instead, made up by arcs contributions.
That’s enough yet in order to ignore from now on what is situated after this
point for which λ = 0, but we can gain something more from this information.
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Checking SP arc costs turns out in this condition for null value in λ

c̃ij = fijr
∗
ij (146)

and, for v̄ = 0, r∗ij = min{rmin, cij} (see (32)).
In particular, we’re concerned about what happens when rmin ≤ cij for all arcs.
That’s because in cij we have jumps upwards in approximation function, and
sometimes in actual function too, as we can check in figures in §5.2.5.
Hence, following this greedy impulse, we end up in r∗ij = rmin for all arcs, thus
costs in SP decrease uniformly as rmin goes down.
In this situation SP solution cannot do without being constant, as long as λ = 0
is still optimal.
Thus we already know that this branch cannot contain the minimum for our
problem, and we want to rapidly descend along this stretch to find us in a
different situation, which empirically means quite often to find ourselves in the
actual optimal point.
We just have to work this descending out.
A first remark in that direction is that, as long as the slope of dual function in
(67) stays negative, λ = 0 is still optimal.
That can be thought of as

β(x, r) =
σ

rmin
− δ +

∑
(i,j)∈A

Lx2
ij

rij
+ l̄ijxij ≤ 0 (147)

defining P0 as the constant optimal path for SP we can reformulate this:

σ

rmin
− δ +

∑
(i,j)∈P0

L

rmin
+ l̄ij ≤ 0 (148)

that is decreasing in r̄min and vanishes in

r0
min =

σ + |P0|L
δ −

∑
(i,j)∈P0

l̄ij
(149)

Anyway, this condition doesn’t grant that the descendent stretch ends here:
λ = 0 can still be optimal solution even when β is positive (it’s just an ipergra-
dient of our function), and empirically it does indeed.
Thus, what we want to do is to perform a line search between this point and a
smaller one for which we already know that λ = 0 is non optimal, in order to
find the minimum point in which this relation holds.
This may seem so inefficient, because we’re doing something similar to our
method, but without been helped by the cuts in doing it.
That would be true if we should solve the entire Lagrangian problem to clue
whether or not zero is its solution.
Actually this could be done simply evaluating SP optimum in λ = 0 and λ = ε,
by comparing those value we’re capable of stating whether or not zero is our
solution.
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We conclude this paragraph opening up the possibility of similar properties
to be found in other Lagrangian reformulation, that can eventually bring to an
even more elaborate and efficient solution.
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6 Numerical results

All the experiments have been performed on a (currently, rather low-end) PC
with 3.7Gb RAM, running a 64 bits Linux operating system (Ubuntu 20.04.2
LTS).
All the codes were compiled with gcc 9.3.0 and -O3 optimizations.
The MISOCP model wes solved by the state-of-the-art, off-the-shelf, commer-
cial solver Cplex 20.1.
The solver was ran without time limit and with default parameters.
It allowed us to solve both the whole DCR problem and its continuous relax-
ation, which we solved twice: the second time with a larger amount of cuts.
Constructing a set of significant DCR instances is a nontrivial exercise; fortu-
nately, the FNSS tool [5] provides a number of expert-tuned options to help
devising realistic models of current telecommunications networks.
The generation process starts by selecting a network topology.
For this, we considered two sets of real-world IP network topologies: the Inter-
net Topology Zoo [6] ones, and the SNDlib ones [7], which can be downloaded
in gml format.
Furthermore, in order to test our models on larger instances we used also ran-
dom topologies generated according to the Waxman model [8].
This can be done by FNSS, which allows to generate random Waxman topolo-
gies simply by specifying the number of nodes n and the probability parameter
α ∈ (0, 1], representing the link density.
In a first tabular some information is shown about graphs we used in testing
and the number of flows we routing among them.
Afterwards in second tabular accuracy and speed of our method are reported,
one can find there Cplex results for optimal solution and both continuous relax-
ations, there the rate of optimal solved flows by our method lies.
That tabular is divided into two halves, the first one refers to the method repre-
sented in this paper; we can find here the rate of optimal solved cases, medium
running time for both optimal and suboptimal cases, and some information re-
lated to suboptimal cases performance: the "subopt dgap" column reports the
quality of our lower bound in non optimal cases, while "subopt pgap" represents
the quality of the heuristic, that is the quality of our upper bound in term of
accuracy with respect to the value of Cplex integer solution.
The second half of this table is dedicated to Cplex performance: it reports re-
laxation and improved relaxation medium running time and the quality of their
bound, it ends with medium running time for solving Cplex in integer case.

As we can see, this method and its optimizations enable a very efficient so-
lution for the problem, that results in optimal solution with an high rate.
Moreover when this solution ends in just an upper and lower bound that don’t
meet at optimum, we still have an accurate bound, and just few branching moves
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are required to find DCR optimum.
Note that in this tabular we pointed Waxman100 improved relaxation dual gap,
because from this size for the graph on it’s no more reliable.
In fact, it starts to return lower bounds that are larger than optimal value, or,
even worse, it concludes that problem is infeasible while it is not, and that’s
why we ignored second relaxation dual gap value from this point on.
Anyway, we tracked its time, to underline its ineffectiveness.
Moreover note that for small graphs our performance is close to cplex one, that
is due to preprocessing and reoptimization weight in time, and this could be
improved by reducing reoptimization in those cases, especially one suggested in
the end of §5.5.
Meanwhile, as soon as dimension starts to grow, we can appreciate how more
effective our method is, and how this increases in effectiveness according to the
growth in number of arcs.

Topology m n n. flows m/n

Cogentco 486 197 600 2.47

Colt 354 153 600 2.31

DialTelecomCz 302 193 600 1.56

Pern 258 127 600 2.03

Waxman100 414 100 600 4.14

Waxman200 1550 200 400 7.75

Waxman300 3630 300 200 12.1

Waxman500 9738 500 150 19.46

Table 1: Topologies information and routed flows
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7 Conclusions

Routing under QoS constraint is clearly an interesting field for research, for we
have to face this problem in a lot of situation, for instance the ones we men-
tioned in introduction.
The MISOCP formulation that is presented in [1] has the important property
to be handled by general-purpose solvers.
Anyway, as we can check in the previous chapter, the numerical results empha-
size their limits, when the size of the graph grows.
In this situation those solvers can manage to find a solution in a rather large
amount of time, hence the urge of a specialized algorithm becomes more com-
pelling.
In this environment our method finds its natural location, for it solves the prob-
lem quickly and at optimality with an high rate.
Whenever this doesn’t happen, our bound is still tighter than the one we could
hope to find via continuous relaxation, and the time gap allows to adjust those
bound performing a B&B procedure.
The difference in time being so relevant, this will hopefully turn out to be still
a more effective procedure in those suboptimal cases, as it is in most of the
encountered ones.
Moreover this paper shows a even more general form for Benders’ decomposi-
tion, that could be performed whenever a problem could be simplified by fixing
one or more variables, while some nonlinear constraints occurs.
If we are interested in those theoretical aspect, we got to watch computational
issues due to excessive partitioning of the domain of those complicated variable,
speeding up this procedure by taking advantage of internal and specific proper-
ties of the problem, as we did.

Thus, those theoretical aspects, the fact that this problem can be encountered
in a such wide range of situations, the complexity of the solution we presented
and the specificity of the remarks we found, in order to speed it up, highlight
what interested us and prompted us to face this problem.
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