
DIPARTIMENTO DI MATEMATICA

Corso di Laurea Triennale in Matematica

Tesi di Laurea

Improvement of Frank-WolfeMethods
viaBundle-inspiredDirections

RELATORE:
Prof. Antonio Frangioni

CORRELATORE:
Dott. Gabriele Iommazzo

CANDIDATA:
Silvia Calabretta

ANNO ACCADEMICO 2023 - 2024

Alla mia famiglia,
e a tutte le amicizie nate lungo questo percorso.

Contents

Introduction 1

1 Contextual Framework 2
1.1 Preliminaries . 2
1.2 Frank-Wolfe algorithms . 3

1.2.1 Indicators of performance . 5
1.3 Bundle Methods . 6

1.3.1 Stabilization . 7
1.4 Duality . 8

1.4.1 PBM dual problem . 9

2 Bundle-Enhanced Frank-Wolfe Method 10
2.1 Method Overview . 10

2.1.1 Stabilization parameter tuning 12
2.1.2 Convergence measure . 12
2.1.3 Dual problem solution . 13

2.2 Generalization of the Model . 14
2.2.1 Bundle management . 15

3 Method Implementation 17
3.0.1 Bundle subproblem . 17
3.0.2 Stopping criteria . 18
3.0.3 Numerical errors management . 19

4 Computational results 20
4.1 Experimental setup . 20
4.2 Performance Evaluation . 21

4.2.1 Fixed stabilization parameter . 21
4.2.2 Tuning of t . 23

A Implemented code 26

B Trust region stabilization 28

i

Abstract

This thesis presents a modified version of the Frank-Wolfe method with an alternative
approach to selecting the search direction. The Frank-Wolfe algorithm is known to have
slow convergence due to its tendency to zigzag. Inspired by Bundle methods, this issue
is addressed by developing a regularized piecewise-linear approximation of the objective
function, exploiting the information derived from the previous iterates. Compared to
the bare gradient, this model provides a more informed direction to be passed to the
Linear Minimization Oracle, that defines the search direction, and therefore enhances
convergence. The method was implemented to validate the proposed modification and
assess its performance. We provide experiments on various step size rules and Linear
Minimization Oracles, and perform a thorough tuning of the algorithmic parameters
of the new approach, in order to analyze under which conditions it is competitive with
the Frank-Wolfe method.

Introduction

Optimization problems play a crucial role in numerous scientific and engineering fields,
with applications ranging widely and gaining renewed interest due to machine learning.
A prominent approach to solving constrained optimization problems is the Frank-Wolfe
(F-W) method, also known as conditional gradient method. Its main appeal lies in its
simplicity, making it especially suitable for problems with constraint structures that
allow efficient linear programming. However, a well-documented limitation of the F-W
method is its slow convergence, particularly in the presence of zigzagging behavior.

To address this limitation, various enhancements and modifications of the F-W
method have been proposed over the years. Regularization and stabilization tech-
niques, often employed in bundle methods, offer a promising direction for improving
performance. Bundle methods are designed to approximate the objective function using
piecewise-linear models that incorporate information from past iterations.

This thesis introduces a modified version of the F-W method that incorporates
ideas from bundle methods to mitigate the zigzagging behavior and improve conver-
gence rates. Specifically, the proposed approach leverages a regularized piecewise-linear
approximation of the translated objective function to derive more informed search di-
rections, which replace the bare gradient used in the vanilla F-W method. The new
method seeks to achieve better performance while preserving the computational effi-
ciency and simplicity that characterize the F-W framework.

The proposed method has been implemented and evaluated through extensive nu-
merical experiments. These experiments explore the impact of various step size rules
and linear minimization oracles (LMOs). Particular attention is given to identifying
the conditions under which the new method outperforms the vanilla F-W method.

The thesis is organized as follows. Chapter 1 provides a comprehensive contextual
framework, an overview of F-W algorithms, and key concepts from bundle methods.
Chapter 2 details the development of the bundle-enhanced F-W method, including
parameter tuning, convergence analysis, and dual problem considerations. Chapter 3
focuses on the implementation aspects, addressing subproblem formulations, stopping
criteria, and the handling of numerical errors. Finally, Chapter 4 presents the results
of the experimentation, including an evaluation of the proposed method, comparisons
with the F-W method, and an analysis of the conditions under which the new ap-
proach demonstrates its competitive advantages. The Appendix A includes part of the
implemented code for reproducibility and further exploration.

1

Chapter 1

Contextual Framework

1.1 Preliminaries

This section introduces definitions useful for understanding the problem context.

Definition 1 (Convex set). A set X ⊆ Rn is convex if ∀x, y ∈ X

λx+ (1− λ)y ∈ X for all 0 ≤ λ ≤ 1.

Definition 2 (Convex function). A function f : X → R is convex if its domain X is
convex and

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ X , 0 ≤ λ ≤ 1.

If f is differentiable over X , then

f convex ⇐⇒ f(y)− f(x) ≥ ⟨∇f(x), y − x⟩ for all x, y ∈ X . (1.1)

A valuable property of convex functions is that local minima are always global minima.

Definition 3 (Subgradient). If f : X → R is convex, a vector z ∈ Rn is called a
subgradient of f at x ∈ X if

f(y)− f(x) ≥ ⟨z, y − x⟩ for all y ∈ X . (1.2)

The set of all subgradients at x is called subdifferential at x and is denoted as ∂f(x).
The subdifferential is always a non empty convex compact set.

Definition 4 (ϵ-Subgradient). If f : X → R is convex, a vector z ∈ Rn is called an
ϵ-subgradient of f at x ∈ X if

f(y)− f(x) ≥ ⟨z, y − x⟩ − ϵ for all y ∈ X . (1.3)

The set of all ϵ-subgradients at x is denoted as ∂ϵf(x).
Iterative optimization algorithms generally depend on a reliable local approxima-

tion of the objective function. The following two properties has proven effective in
constructing quadratic approximations.

2

Definition 5 (Strongly convex function). A function f : X → R, differentiable over
X , is µ-strongly smooth over X if ∃ µ > 0 such that

f(y)− f(x) ≥ ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2 for all x, y ∈ X .

Definition 6 (Smooth function). A function f : X → R, differentiable over X , is
L-smooth over X if ∃ L > 0 such that

f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2 for all x, y ∈ X .

In particular, smoothness is fundamental as it allows to estimate the decrease in the
value of f when moving to a different point of X , as it is shown in the following [1,
Lemma 1.5].

Lemma 7 (Progress lemma for smoothness). Let f be an L-smooth function and let
y = x− γd, where d is an arbitrary vector. If y is in the domain, then

f(x)− f(y) ≥ ⟨∇f(x), y − x⟩
2

· γ for 0 ≤ γ ≤ ⟨∇f(x), d⟩
L∥d∥2

(1.4)

1.2 Frank-Wolfe algorithms

F-W algorithms [1, 2] are a class of first-order iterative algorithms for constrained
convex optimization problems, although they can also be used for unconstrained op-
timization. Given a differentiable function f : X → R, where X ⊆ Rn is a compact
convex set, the goal is to find a point x∗ in the domain that minimizes the value of f :

f∗ = f(x∗) = min
x∈X

f(x). (1.5)

In general the minimizer is not unique, we look for a point x∗ ∈ Ω∗, the set of minima
of f .

In order to decrease the value of the objective function, many first-order algorithms
take a step along properly chosen directions and then perform projection to maintain
feasibility of the iterates. Unfortunately the rise of large data and complicated con-
straints in recent years has made the computational cost of the projection operator
unmanageably high. F-W algorithms are projection-free methods: they avoid projec-
tion by moving towards an extreme point via linear minimization. This task is managed
through the following two oracles, which are in fact the only methods with direct access
to the objective function f and the feasible region X .

The First-Order Oracle (FOO) is queried with a point x ∈ X and returns the
function value f(x) and the gradient ∇f(x) of f at x.

Oracle 1: First-Order Oracle (FOO)
Input: Point x ∈ X
Output: f(x) and ∇f(x)

3

The LMO is queried with a linear function c, and returns an extreme point v ∈
argminx∈X ⟨c, x⟩. It is important to observe that v is not necessarily unique, but
selecting one is a task performed by the oracle itself.

Oracle 2: Linear Minimization Oracle (LMO)
Input: Linear objective c
Output: v ∈ argminx∈X ⟨c, x⟩

The original algorithm of this class is due to Frank and Wolfe [3]. It generates a
sequence of feasible points xi by optimizing first-order approximations of the objective
function f , that we are assuming smooth and convex. At each iteration, the LMO is
queried with ∇f(xi) and provides an extreme point vi, which is used to construct the
descent direction vi − xi. The next iterate xi+1 is obtained by proceeding along this
direction, i.e. xi+1 = xi + γi(vi − xi) in [xi, vi], the segment between xi and vi, where
γi is the step size.

One possible choice is line search, that consists in selecting γ such that xi+1 is the
point with the minimum value function along the descent direction:

γi := argmin
γ∈[0,1]

f(γv + (1− γ)x).

This method guarantees the quickest progress and monotone decreasing function values,
but typically has a high computational cost. That is why the next methods are generally
preferred.

The short step rule exploits the smoothness of the objective function [4, pp. 18-19],
leading to

γi := min {⟨∇f(x), xi − vi⟩
LD2

, 1},

where D := supx,y∈X ∥x − y∥ is the diameter of X and L is the smoothness constant
of f . This exact formula has the quality of being easily computable, and guarantees
monotone decreasing function values. Unfortunately, it requires a good approximation
of L, that is not necessarily easy to estimate. That is why some adaptive versions of
this method have been developed, which dynamically approximate L adjusting the rule
based on local changes.

The function-agnostic step size rule finally chooses γi based solely on the iterate
number i, regardless of the objective function f . This avoids the necessity of approxi-
mating the smoothness constant L, and is highly beneficial when computing the values
of f is expensive. An example is the rule γi = 2/(i + 2), which gained popularity
thanks to Jaggi [5]. The main drawback of any function-agnostic step size rule is that
the convergence rate of the algorithm is constrained to a predetermined value, limiting
the algorithm’s potential to adapt.

4

1.2.1 Indicators of performance

To assess the quality of a proposed solution x of the minimization problem, several
measures can be used. A natural measure could be the distance to the set of minima
dist(x,Ω∗), but, unfortunately, little is known about the convergence behavior of the
iterates xi. Therefore, the F-W algorithms are evaluated via the function value f(xi)
and in particular its distance from f(x∗). The primal gap is the most commonly used
measure for conditional gradient algorithms.

Definition 8 (Primal gap). The primal gap of a function f : X → R at a point x ∈ X
is

p(x) := max
y∈X
{f(x)− f(y)} = f(x)− f(x∗).

However, without knowing an optimum x∗ or the objective function value f(x∗), the
primal gap is not directly computable. In order to avoid this issue, the next measure
is used.

Definition 9 (F-W gap). The F-W gap (or dual gap) of a function f : X → R at a
point x is

q(x) := max
y∈X
⟨∇f(x), x− y⟩.

The F-W gap represents the difference between the gradient at the current point and
the best descent direction available within the feasible region. Clearly p(x) ≥ 0 and
q(x) ≥ 0 for all x ∈ X . The advantage in using the F-W gap is that it is computable
without knowing x∗ and it provides an upper bound on the primal gap [1, Equation
1.5]:

0 ≤ p(x) = f(x)− f(x∗) ≤ ⟨∇f(x), x− x∗⟩ ≤ max
v∈X
⟨∇f(x), x− v⟩ = q(x). (1.6)

It directly follows that q(x) serves as a stopping criterion for the algorithm when it
comes to find a minimum, as q(x) < ϵ guarantees a precision of at least ϵ on the
estimate of f∗. Moreover, when f is convex and differentiable, q(x) provide a first-
order optimality condition: the point x∗ ∈ X is optimal if and only if

⟨∇f(x∗), x∗ − x⟩ ≤ 0 for all x ∈ X ;

this in particular holds in (1.6) for the maximum of the scalar product over all x ∈ X ,
which therefore gives

q(x) = 0 ⇐⇒ x = argmin
y∈X

f(y).

However, when f is non-convex, this property is no longer valid: q(x) = 0 is a necessary
condition but is not sufficient, even when considering local optimality.

The main steps performed by the vanilla F-W algorithm are summarized in Algo-
rithm 3.

5

Algorithm 3: Vanilla F-W Algorithm
Input: f , x0, LMO, step_size, max_iter, ϵ
Output: x , v

Initialization: x← x0, FW_gap ← Inf.
while k = 1 . . . max_iter ∧ FW_gap ≥ ϵ do

vk ← LMO(∇f(xk))
dk ← xk − vk
FW_gap ← ⟨∇f(xk), dk⟩
γk ← step_size(xk, vk)
k ← k + 1

xk+1 ← xk − γk · dk
end

1.3 Bundle Methods

The Bundle Methods (BM) [6, 2] are a large class of algorithms for the constrained
convex minimization problem (1.5), where the objective function f : Rn → R is proper
and convex, but not necessarily differentiable. A different approach from that of the
F-W algorithms is then required.

Firstly, the gradient is no longer available, so subgradients are used instead. The
FOO is replaced with the Subgradient First-Order Oracle (SFOO): when queried with
a point x ∈ X , it returns the function value f(x) and a subgradient in ∂f(x) of f at x.

Oracle 4: Subgradient First-Order Oracle (SFOO)
Input: Point x ∈ X
Output: f(x) and z ∈ ∂f(x)

The basic idea of BM is to approximate the subdifferential of the objective function
by gathering subgradients from previous iterations into a bundle B. This approach pro-
vides more information about the local behavior of the function than a single arbitrary
subgradient can offer.

At each iteration i, we consider some auxiliary points xj ∈ X and subgradients
zj ∈ ∂f(xj) for j ∈ Ji, where ∅ ≠ Ji ⊂ {1, . . . , i}. The bundle Bi keeps track of the
auxiliary points and their subgradients storing their values. The objective function f
is now approximated with a convex model f̌ i that relies on the bundle, so that the next
iterate can be selected:

xi+1 ∈ argmin {f̌ i(x) | x ∈ X}. (1.7)

The Master Problem (MP) (1.7) is a convex optimization problem and in general a
manageable problem to solve. The last step of the iteration consists in updating the
bundle, and therefore the model, with the new trial point.

Algorithms in BM class are distinguished, among other things, by the model used

6

for the objective function. The most common choice is the Cutting Plane Model (CPM),
which follows.

As shown in [2, Equation 11.1], a convex function f can be represented as

f(x) = max {f(y) + ⟨z, x− y⟩ | z ∈ ∂f(y), y ∈ Rn} for all x ∈ Rn. (1.8)

Since this representation would need the whole subdifferential ∂f(y), which is an ex-
cessive requirement, the model is developed through approximation.

Definition 10 (Cutting Plane Model). Given {(xj , zj)}j∈Ji , the CPM of f at the
current iteration i is the finite piecewise approximation

f̌ i(x) := max {f(xj) + ⟨zj , x− xj⟩ | j ∈ Ji} for all x ∈ Rn. (1.9)

What makes CPM a model of f is zj ∈ ∂f(xj), as (1.2) directly implies f̌ i(x) ≤ f(x).
By definition of the model, for all i it holds f̌ i(xj) = f(xj). Moreover, as the iterations
increase, the CPM becomes more and more refined, i.e. f̌ i(x) ≤ f̌ i+1(x).

When the CPM is used in BM, it is more efficient to define the bundle as Bi =
{(zj , αj)}j∈Ji , where αj := ⟨zj , xj⟩ − f(xj). The reason lies in the fact that (1.9) can
be reformulated as

f̌ i(x) = max {⟨zj , x⟩ − αj | j ∈ Ji}, (1.10)

thus allowing to use and store the linearization errors αi, without requiring direct access
to the trial points.
An interesting feature of this method is that the next iterate can be written as

xi+1 ∈ argmin {y | y ≥ ⟨zj , x⟩ − αj , j ∈ Ji, y ∈ R, x ∈ X}. (1.11)

This formulation brings out that the natural space for the MP in (1.11) is the epi-
graphical space of the objective function, where the variable y represents the values of
f̌ i.

One of the most problematic aspects of the CPM is that the convergence is by nature
prone to instability, potentially resulting in consecutive iterations far apart from one
another, which also produce slow convergence. This leads to the necessity to stabilize
the model, which can occur in different ways. The discussion can be applied to a generic
model, but we will be referring to the CPM in particular. The following section closely
follows [6, paras. 2.1-2.2].

1.3.1 Stabilization

Stabilizing the CPM consists in ensuring that the iterates do not deviate excessively
from a properly chosen point. However the proper point - ideally x∗ - is generally
unknown, and thus must be estimated and updated iteratively. Therefore a sequence
{xi} of stability centers is considered. It is reasonable to assume that {xi} ⊆ {xi},
with typically the useful consequence f̌ i(xi) = f(xi) when they result to be part of

7

the bundle. Different variants of BM may respond differently to various stabilization
strategies, and the stabilization parameter helps to regulate the process.

The Proximal Bundle Method (PBM) retrace the idea behind the proximal operator,
considering the MP

xi+1 ∈ argmin {f̌ i(x) +
µi

2
∥x− xi∥22}, (1.12)

where the stabilization parameter is µi. In this context, it is interesting to consider the
Moreau-Yosida regularization ϕµ of f in terms of the displacement d from x:

ϕµ(x) = min {f(x+ d) +
µ

2
∥d∥22 | d ∈ Rn}. (1.13)

Since d = 0 is feasible, it holds ϕµ ≤ f . Moreover, given d∗ the unique optimal solution
of (1.13), d∗ = 0 implies that x is a minimum both of f and ϕµ, hence minimizing ϕµ is
equivalent to (1.5). Therefore, in the case where (1.13) is easily solvable, it is possible
to determine the next stability center as xi+1 = xi + di∗ = xi+1, which results in the
usually called Proximal Point Algorithm (PPA).

1.4 Duality

When a mathematical optimization problem is challenging to solve, a classical approach
is to consider the associated dual problem, with the hope that it may be more tractable.
This section briefly expose the theory on the subject, and presents the dual problems
of the models introduced in the previous section.
Let’s consider the constrained minimization problem

f∗ = min {f(x) | x ∈ X} (1.14)
X = {x ∈ Rn | gi(x) ≤ 0 i ∈ I,

hj(x) = 0 j ∈ J },

where I and J are sets of indices. We assume the domain D =
⋂

i∈I dom gi ∩⋂
j∈J dom hj non empty. The Lagrangian associated with the problem (1.14) is the

function
L(x, λ, µ) = f(x) +

∑
i∈I

λigi(x) +
∑
j∈J

µjhj(x). (1.15)

The vectors λ ≥ 0 and µ are the dual variables associated with the problem (1.14), and
their components, λi and µj , are the Lagrangian multipliers respectively associated
with the ith inequality and jth equality constraints. The Lagrange dual function is
defined as the minimum value of the Lagrangian over x:

g(λ, µ) = inf
x∈D

L(x, λ, µ) = inf
x∈D

(
f(x) +

∑
i∈I

λigi(x) +
∑
j∈J

µjhj(x)
)
. (1.16)

It is interesting to observe that since the dual function is the point-wise infimum of a
family of affine functions of (λ, µ), it is always concave.

8

As shown in [7, para. 5.1.3], for any λ ≥ 0 and any µ, the dual function provide
lower bounds to the optimal value f∗, i.e. g(λ, µ) ≤ f∗. Therefore, the best lower bound
yielded by the dual function is provided by the Lagrange dual problem associated with
(1.14):

g∗ = max {g(λ, µ) | λ ≥ 0} (1.17)

In this context, we may refer to (1.14) as the primal problem. Optimal values (λ∗, µ∗)
for (1.17) are called dual optimal or optimal Lagrange multipliers.

The dual problem is a convex optimization problem, since we are maximizing the
concave function g(λ, µ) on a convex set (λ ≥ 0), and this happens whether or not the
primal problem is convex. Clearly, the inequality g∗ ≤ f∗ holds, which is referred to as
weak duality. Strong duality holds when the inequality holds as an equality.

We now proceed to explicitly address the dual problem in the case of PBM [6, para.
3.1].

1.4.1 PBM dual problem

In this context, it is useful to consider the MP obtained through translation of (1.12):

min
d∈Rn

f̌x(d), where f̌x(d) := f̌(x+ d)− f(x) +
µ

2
∥d∥22. (1.18)

Typically x is the current stability center and d is the displacement x − x. Note
that this model also depends on the bundle; however, we will avoid complicating the
notation. Actually the translation affects the bundle itself, since αi is replaced with
the linearization error

αi(x) := f(x)− f(xi)− ⟨zi, x− xi⟩ = αi − ⟨zi, x⟩+ f(x). (1.19)

For sake of simplicity we will be using αi as much as possible, since usually x is clear
from the context.

This interpretation allows to rewrite (1.18) as follows, which represents the primal
problem:

min {r + µi

2
∥d∥22 | r ≥ ⟨zj , d⟩ − αj , j ∈ Ji, d ∈ Rn}. (1.20)

Since µi

2 ∥d∥
2
2 =

1
2d

TQd with Q = µI, (1.20) is a quadratic programming problem with
some quadratic and some linear variables. This leads to the dual problem

[−] min {
∑
j∈Ji

αjθ
j +

1

2µi
∥
∑
j∈Ji

zjθ
j∥22 | θ ∈ Θ}, (1.21)

where Θ = {θ ∈ R|Ji|
+ |

∑
j∈Ji

θj = 1}. Given θ∗ the optimal solution of (1.21),
zi∗ =

∑
j∈Ji

zjθ
j
∗ and αi

∗ =
∑

j∈Ji
αjθ

j
∗ the aggregated subgradient and linearization,

such that vi∗ ∈ ∂αi
∗
f(xi) [6, (25)]; the KKT conditions allow us to compute the optimal

solution of (1.20):

di∗ = −
1

µi
zi∗, ri∗ = −

1

µi
∥zi∗∥22 − αi

∗. (1.22)

9

Chapter 2

Bundle-Enhanced Frank-Wolfe
Method

This chapter introduces the proposed bundle F-W method, which integrates elements
of BM into the classical F-W framework. The chapter begins by outlining the general
methodology, emphasizing how the regularized piecewise-linear approximation of the
objective function informs the search direction. The second section extends the model
presented in the first section, aiming to incorporate additional information for for more
precise results.

2.1 Method Overview

Let f : X → R be a differentiable function, where X ⊆ Rn is a compact convex set.
The goal is to find a point x∗ ∈ X that minimizes f , i.e.

f∗ = f(x∗) = min
x∈X

f(x), (2.1)

by running the F-W algorithm. Assume the point xk−1 has been computed during
the (k − 1)-th iteration, we now proceed with the k-th iteration of the vanilla F-W
algorithm. In this step, the LMO is queried with the direction dk−1 = ḡk−1, where
ḡk−1 := ∇f(xk−1) is the gradient of f at xk−1. The LMO returns vk, an extreme point
of the feasible region X . The descent direction ξk = vk − xk−1 is then defined, and the
next iterate xk is computed as

xk = xk−1 + γkξ
k, (2.2)

where the step size γk ∈ [0, 1] is chosen to maximize the reduction in the objective func-
tion along the direction ξk. Typically, the line search procedure begins with γk = 1 and
iteratively refines this value to optimize the decrement. Hence, from a computational
standpoint, it is then reasonable to assume that the gradient gk := ∇f(vk), evaluated
at the extreme point vk, is available.

10

In the subsequent iteration, the LMO would again be queried with the direction
dk = ḡk, , where ḡk := ∇f(xk), to determine the next vertex vk+1. This approach
involves approximating the objective function f using its linear first-order expansion
at xk. While this approach is computationally efficient, it does not leverage additional
information about the curvature or higher-order behavior of f .

To address this limitation, the aim is to construct a more accurate model of the
objective function by incorporating information gathered in previous iterations. Specif-
ically, consider the translated function hk(d) = f(xk + d)− f(xk). The two functions

l̄k−1(d) := ḡk−1d− ᾱk−1 where ᾱk−1 := f(xk)− f(xk−1)− ḡk−1(xk − xk−1) ≥ 0,

lk−1(d) := gk−1d− αk where αk := f(xk)− f(vk)− gk−1(xk − vk) ≥ 0,
(2.3)

correspond to the linear first-order expansion of hk in xk−1 and vk, from which clearly
follows hk ≥ l̄k−1 and hk ≥ lk−1. From convexity it also holds that hk(d) ≥ l̄k(d) := ḡkd,
the first-order expansion of f (hence of hk) previously mentioned. As a consequence,

hk(d) = max {l̄k(d), l̄k−1(d), lk−1(d)} (2.4)

is still a model of hk, i.e. hk(d) ≥ hk(d) for all d ∈ Rn. In particular, (2.4) exactly corre-
sponds to the CPM of hk built with the bundle Bk = {(ḡk−1, ᾱk−1), (gk−1, αk), (ḡk, 0)}.

Based on the classic technics of BM, since (2.4) is a piecewise-linear model and,
therefore, generally not differentiable, an additional stabilization term is introduced
(see (1.3.1)), resulting in the model

hkt (d) = hk(d) +
1

2t
∥d∥22, (2.5)

where t is the stabilization parameter. In order to determine dk, we now proceed to
solve the problem minhkt (d), which can be rephrased as

min {r + 1
2t∥d∥

2
2 | r ≥ ḡkd, r ≥ ḡk−1d− ᾱk−1, r ≥ gk−1d− αk}. (2.6)

Given (rk∗ , d
k
∗) as the optimal solution of (2.6), the value of dk∗ can be explicitly com-

puted. This is achieved by applying duality theory: the dual problem of (2.6) is

min {ᾱk−1θ̄k−1 + αkθk + 1
2 t∥ḡ

k−1θ̄k−1 + gkθk + ḡkθ̄k∥22 | θ̄k−1 + θk + θ̄k = 1, θ ≥ 0},
(2.7)

which from (1.22) returns

dk∗ = −tzk∗ where zk∗ = ḡk−1θ̄k−1 + gkθk + ḡkθ̄k, (2.8)

and, given αk
∗ = ᾱk−1θ̄k−1 + αkθk, it holds zk∗ ∈ ∂αk

∗
f(xk), i.e.

f(y)− f(xk) ≥ ⟨zk∗ , y − xk⟩ − αk
∗ ∀y ∈ Rn. (2.9)

It is important to note that the optimal value of (2.6) is non positive, as the pair (0, 0)
is feasible. Furthermore if dk∗ = 0, then necessarily rk∗ = 0, which implies zk∗ = 0 and

11

αk
∗ = 0. This is the only possible scenario for htk(d

k
∗) = 0, which ultimately leads to

0 ∈ ∂f(xk), i.e. xk is the optimal point.
Since ḡkdk∗ = ∇f(xk)dk∗ ≤ rk∗ < 0, dk∗ is a descent direction, hence dk = zk∗ =

−(1/t)dk∗ is a valid choice as objective function for the LMO. It is exactly the choice
we make in our method, so that the LMO computes

vk+1 ∈ argmin {zk∗x | x ∈ X}, (2.10)

hence zk∗vk+1 ≤ zk∗xk, which implies dk∗ξ
k+1 ≥ 0. Since ḡkdk∗ < 0, there are good

probabilities that also ∇f(xk)ξk+1 < 0, which would mean that ξk+1 is a descent
direction.

We now proceed as in a classical iteration of the F-W method, by calculating the
step γk+1 and determining the new iteration xk+1 = xk + γk+1ξ

k+1. The main steps of
the proposed method are summarized in Algorithm 5.

2.1.1 Stabilization parameter tuning

To ensure that ξk is a descent direction, it is necessary to carefully adjust the value of t.
Specifically, as t increases, the norm term becomes progressively more dominant in the
objective function of (2.7). For sufficiently large t, the resulting direction corresponds to
the vector with the minimum norm in conv(ḡk−1, gk−1, ḡk), regardless of the magnitudes
of ᾱk−1 and αk. In other words, the direction choice becomes independent of the quality
of the first-order information provided by ḡk−1 and gk−1. Conversely, for smaller values
of t, the impact of the linearization errors becomes more pronounced: as t → 0, it
is expected that zk∗ = ḡk. Therefore, if ξk+1 does not result in a descent direction,
the parameter t can be reduced, and the process can be repeated. This procedure is
reminiscent of a NS, where the stability center, xk in this scenario, does not change.
Typically in BM a NS is used to enrich the model with the new information produced,
in particular the bundle is informed with the new gradient gk.

Another issue to consider is that the bundle subproblem does not explicitly include
the constraints that define the feasible region. One way to provide the master problem
(2.7) with information about how close the current iterate xk is to the boundary of the
feasible region, is to incorporate this information setting the parameter t such that the
norm of dk∗ and the norm of ξk are comparable. In fact, they respectively represent the
step size deemed necessary by the master problem and the step size actually feasible.
Consequently, gradually reducing the value of t as the iterate approaches the boundary
of the feasible region can be considered an effective strategy to adopt.

2.1.2 Convergence measure

In this context, the dual gap no longer provides an upper bound on the primal gap,
as the inequality (1.6) relies on using the gradient as objective function for the LMO.
However, it is possible to leverage (2.9) to derive a new bound on the primal gap.
Specifically, by taking y = x∗, we obtain

0 ≤ p(xk) = f(xk)−f(x∗) ≤ ⟨zk∗ , xk−x∗⟩+αk
∗ ≤ ⟨zk∗ , xk−vk+1⟩+αk

∗ =: q(xk). (2.11)

12

Actually, a tighter estimate of the gap can be achieved. Consider the quantity

qk := f(xk) + ⟨zk∗ , vk+1 − xk⟩ − αk
∗ = f(xk)− q(xk). (2.12)

From (2.11), it follows that f(x∗) ≥ qk for all k, and thus

fk := max
i≤k

qi ≤ f(x∗) (2.13)

represents the best available lower bound on f(x∗) at the k-th iteration. Conversely,
the best available upper bound is clearly given by

f̄k := min
i≤k

f(xi) ≥ f(x∗). (2.14)

It follows that the best estimate of the gap available at the k-th iteration is

wk = f̄k − fk, (2.15)

This value serves as stopping criteria for the algorithm: the inequality wk ≥ f̄k−f(x∗)
holds and f̄k − f(x∗) gives a better estimate of the precision rather the p(xk), as
f̄k − f(x∗) ≤ p(xk). It follows that when wk ≤ ϵ, where ϵ is the desired precision
for the approximation, the optimal solution of (2.1) is given by f̄k, and a minimizer
is x∗ ∈ argmini≤k f(xi). This approach leverages the best upper and lower bounds
obtained across all iterations, which may have been computed in different iterations
due to the zigzag phenomenon, rather than relying solely on the values calculated in a
single iteration, and thus may be satisfied in less iterations.

Actually, the same concepts can be applied to vanilla F-W. The best upper bound
available at the k-th iteration is still f̄k. Similarly as before, leveraging (1.6) the best
available lower bound is

fk := max
i≤k
{f(xi)− q(xi)}. (2.16)

Consequently, the most accurate approximation of the gap at the k-th iteration is given
by f̄k − fk. This value reduces to q(xk), and therefore induces the classic stopping
criteria q(xk) < ϵ, only when both f̄k and fk are monotones, which is not necessarily
the case, e.g. when a function-agnostic stepsize is used. Therefore, it would be more
reasonable to adopt f̄k − fk < ϵ as the stopping criteria, as this approach could save
unnecessary iterations. Moreover, computing and storing the value of f̄k and fk have a
constant computational cost, since primal and dual gaps are already being computed.

2.1.3 Dual problem solution

Since (2.7) is a quadratic problem in two free variables, it can be solved quite easily.
An active-set method only has to enumerate all possible 7 patterns of non-zeroes of the
variables (all-zero is non feasible). If only one variable is nonzero, the problem is trivial.
If one variable is set to zero, we come down to a problem with only one free variable,

13

which can be solved with a closed formula. Suppose θ̄k−1 = 0 (θk = 0 is analogous),
the problem becomes

min {αkθk + 1
2 t∥g

kθk + ḡk(1− θk)∥22 | θk ∈ [0, 1]}, (2.17)

whose optimal solution has the following closed-form expression:

θk∗ = min
{
1,max

{
0, −αk−t⟨gk−ḡk,ḡk⟩

t∥gk−ḡk∥22

}}
. (2.18)

Similarly if θ̄k = 0, the problem reduces to

min {ᾱk−1(1− θk) + αkθk + 1
2 t∥ḡ

k−1(1− θk) + gkθk∥22 | θk ∈ [0, 1]}, (2.19)

and the optimal solution is:

θk∗ = min
{
1,max

{
0, ᾱ

k−1−αk−t⟨gk−ḡk−1,ḡk−1⟩
t∥gk−ḡk−1∥22

}}
. (2.20)

Lastly, if all the three variables are different from zero, we can consider the problem
without the constraint θ ≥ 0, reformulated in its vectorized structure:

min {αT θ +
1

2
t θTGθ | eT θ = 1}, (2.21)

where α = [ᾱk−1, αk, 0], θ = [θ̄k−1, θk, θ̄k], e = [1, 1, 1] and G is the Gram matrix 1

of the vectors {ḡk−1, gk−1, ḡk}. We now consider the 4 × 4 system given by the KKT
conditions {

Gθ = −1
t (α+ µe)

eT θ = 1
, (2.22)

where µ is the forth variable. If the solution θ∗ of this system satisfies θ∗ ≥ 0, then it
is the optimal value of (2.7), otherwise it is to be found in the previous cases.

2.2 Generalization of the Model

In the previous section, we present a model that employs three gradients to effectively
approximate the behavior of the objective function. While this approach is capable of
delivering accurate results, it is possible to further enhance the model’s precision and
adaptability by incorporating more gradients, potentially all those available. Expanding
the number of gradients provides additional directional information, enabling a more
refined representation of the function.

Consider xh for h ∈ Ik, where ∅ ̸= Ik ⊆ {1, . . . , k}. These represent the iterations
used to build the CPM of hk(d), by considering the linear first-order expansion of hk(d)
in xh. Actually, given the form of the linear expansions (2.3), rather than the iterates

1The Gram matrix of a set of vectors {v1,v2, . . . ,vn} in an inner product space is the n × n
Hermitian matrix of inner products, whose entries are given by Gij = ⟨vi,vj⟩.

14

xh, we are interested in a set of pairs (gi, αi) such that gi ∈ ∂αif(xk), which constitute
the bundle Bk. It should be noted that the indices i may not be related with the h (cf.
(2.4): some of the approximate subgradients correspond to some xh, some do not).

Building on the framework introduced in the previous section, we consider the
bundle Bk = {(ḡk, 0)} ∪ {(ḡi−1, ᾱi−1), (gi−1, αi) | i ≤ k}. This means that the CPM is
built using the linear expansion of hk(d) in all the previous iterates and vertices, other
than the current one.
That is, hk(d) is better defined in the general way

hk(d) = max {gid− αi | i ∈ Bk}, (2.23)

where the notation i ∈ Bk stands for (gi, αi) ∈ Bk. The corresponding primal and dual
problems then are

min {r + 1
2t∥d∥

2
2 | r ≥ gid− αi, i ∈ Bk} (2.24)

and
min

{ ∑
i∈Bk

αiθi + 1
2 t∥

∑
i∈Bk

giθi∥22 | θ ∈ Θ
}
, (2.25)

with solution
dk∗ = −tzk∗ where zk∗ =

∑
i∈Bk

giθi∗. (2.26)

Given αk
∗ =

∑
i∈Bk αiθi∗, zk∗ still have the crucial property zk∗ ∈ ∂αk

∗
f(xk). Thus,

it follows that all considerations about the method presented in the previous section
remain applicable using this model, as the properties of the elements are entirely pre-
served: dk∗ is still a descent direction, and therefore the stabilization parameter tuning
and convergence measures remain valid.

2.2.1 Bundle management

Assuming the property gi ∈ ∂αif(xk) holds, the selection of the elements in the bundle
offers flexibility. From a computational perspective, it is clearly advantageous to choose
elements that are inexpensive to evaluate.

A standard strategy is to ensure that i ∈ Bk+1 for all i such that θi∗ > 0, a procedure
known as selection. It is important to note that, according to Carathéodory’s theorem,
there always exists a vector θi∗ with at most n + 1 nonzero components. This estab-
lishes a finite upper bound on the cardinality of the bundle, ensuring its size remains
manageable.

Another technique is suggested by the property zk∗ ∈ ∂αk
∗
f(xk): this means that

the pair (zk∗ , α
k
∗) can be inserted into Bk. The aggregated pair (zk∗ , α

k
∗) has not been

obtained at any iterate xh, but this is not an issue. The important result [6, sec. 3.2] is
that it can actually substitute all the pairs currently into the bundle: if one were to set
Bk+1 = {(zk∗ , αk

∗)}, which means forgetting all the other information and just keeping
the aggregated pair, then the problem

min {v + 1
2t∥d∥

2
2 | v ≥ zk∗d− αk

∗} (2.27)

15

has precisely the same solution dk∗ as (2.24). This allows, at each iteration, to start
from an arbitrarily large bundle and compress it down to a single element without
losing some important properties. Of course, one does not actually want the solution
to remain unchanged, but this would only be the case if xk and t would stay the same,
which we do not expect to happen.
Unfortunately, although using this bundle update technique results in a convergent
method, its advantage is only theoretical, as the convergence is so slow that the only
feasible stopping criterion is a limit on the maximum number of iterations.

Algorithm 5: Bundle F-W Algorithm
Input: f , x0, t, LMO, step_size, max_iter, ϵ
Output: x∗ , v∗

Initialization: x ← x0 , primal ← f(x0), FW_gap ← Inf, upper ← Inf,
lower ← -Inf.

while (k = 1 . . . max_iter) ∧ (upper - lower ≥ ϵ) do
zk, αk ← bundle(xk, t)
vk ← LMO(zk)
dk ← xk − vk
if ⟨∇f(x), dk⟩ > 0 then

γk ← step_size(xk, vk)
else

t tuning
γk ← 0

end
primal ← f(xk)
if primal < upper then

upper ← primal
x∗ ← xk

end
FW_gap ← ⟨zk, dk⟩+ αk

dual ← primal - FW_gap
if dual > lower then

lower ← dual
end
k ← k + 1

xk+1 ← xk − γk · dk
end
z∗,_← bundle(x∗, t)
v∗ ← LMO(z∗)

16

Chapter 3

Method Implementation

To conduct the experimentation and evaluate both the convergence properties of the
proposed method and its competitiveness relative to the vanilla F-W algorithm, the im-
plementation was carried out using the Julia programming language (version v1.11.2).
This choice was driven primarily by Julia’s high execution speed, achieved through just-
in-time compilation, which ensures reliable and efficient performance. Additionally, the
availability of specialized optimization libraries, such as FrankWolfe.jl and JuMP.jl,
provided essential tools for the development process.

The primary reference for the implementation was the FrankWolfe.jl package,
specifically its frank_wolfe() function, which serves as the core algorithmic compo-
nent. Although, theoretically, the only required modification to the F-W algorithm con-
cerned the direction provided to the LMO, direct changes to the function frank_wolfe()
were necessary. These modifications will be discussed in detail in the following chapter.

Algorithms (3) and (5) present the main steps performed, respectively, by the
frank_wolfe() function and its modified version, bundle_frank_wolfe().

3.0.1 Bundle subproblem

The core component of this algorithm is the implementation of the bundle subproblem.
It is passed to the function bundle_frank_wolfe() as an argument, so that different
models may be implemented. Initially, an alternative approach was explored, in which
the bundle function was passed directly as an argument to frank_wolfe(), in place
of the gradient function. However, this approach proved unsuitable, as the exact gra-
dient is necessary to verify whether the direction dk is increasing. This lead to the
development of a modified version of the original function.

The resolution of the bundle subproblem was implemented through the function
bundle_grad!(storage, x, h, trajectory_arr, t, alpha; use_vertices, tol) (re-
fer to the full code in (A)). When evaluated at xk, this function returns the gradient
∇f(x0) for the first iteration; otherwise, it proceeds with the following steps.

1. Extracts xk−1, . . . , xk−h (and vk−1, . . . , vk−h if use_vertices=true) from the vec-
tor trajectory_arr, which stores information about previous iterations.

17

2. Computes the relative gradients gi and linearization errors αi.

3. Solves the dual problem (2.7) by computing the optimal dual variables θi∗.

4. Stores the value of zk∗ in storage and append the value of αk
∗ to alpha.

In particular, step 3 was implemented using JuMP, a domain-specific modeling lan-
guage in Julia designed for mathematical programming and optimization problem for-
mulation. The specific solver used for this step was Ipopt (Interior Point OPTimizer),
which is well-suited for solving large-scale nonlinear optimization problems.

To enhance computational efficiency, the problem in (2.7) was formulated in its
vectorized form, as shown in (2.21). This formulation significantly accelerates execution
by leveraging vector operations, which are more efficient than element-wise operations.

To enable the function bundle_grad!() to access information from previous it-
erations, the callback function plays a crucial role. This function tracks the values
computed at each iteration and stores them in a vector, making data accessible for
subsequent analysis. The use of callback function has already been implemented in
frank_wolfe(). Moreover, it is possible to pass as argument an external callback func-
tion, which stores specific information in a global variable previously defined. In this
case, when the callback function is queried, it performs both the storage operations
on the global variable and a defined vector within the function scope. We preserved
this feature and leveraged it to store the iterates xi and the extreme points vi in a
global variable, which was passed as the trajectory_arr argument to the function
bundle_grad!(). This approach was made feasible by Julia’s support for anonymous
functions.

3.0.2 Stopping criteria

As discussed in Section 2.1.2, in the proposed method the dual gap does not provide
an upper bound on the primal gap, and therefore cannot serve as stopping criteria.
Instead, it is replaced by q(x). To compute this quantity, the additional term αk

∗
is evaluated by the bundle_grad!() function and stored in the vector alpha, which
maintains a record of these values across iterations.

The value q(x) may be used as stopping criteria, as the standard approach uses
the dual_gap < ϵ technique. However, this can be improved, since it relies solely on
data from the current iteration, while better upper and lower bounds might have been
identified during previous iterations.

To address this, the bundle_frank_wolfe() algorithm introduces the variables
upper and lower, which store f̄k and fk, respectively. These represent the best upper
and lower bounds found up to the current iteration. The stopping criterion is thus
reformulated as wk = f̄k − fk < ϵ. This adjustment prevents unnecessary iterations
when the best bounds are identified in different iterations rather than in the same one.

Additionally, a maximum iteration limit, passed as an argument to the function,
is implemented. This provides greater control over the algorithm and avoids infinite
loops in challenging problems where convergence is poor.

18

3.0.3 Numerical errors management

During the implementation, it became necessary to address numerical errors that arose
in variables theoretically constrained to be non-negative but which, due to computa-
tional approximations, occasionally assumed slightly negative values.

Specifically, this issue was observed in the linearization errors αi, the scalar product
⟨zk∗ , dk⟩ and the dual solutions θi∗. The errors in the former two variables can be
attributed to numerical inaccuracies in the computation of dot products, particularly
when working with small numbers. Instead, errors in the dual solutions are linked to
the behavior of the solver, which employs slightly relaxed constraints compared to the
initial specifications to improve convergence.

These numerical discrepancies were managed by defining a tolerance threshold η =
10−12 ∗ max (|f∗|, 1). Values falling within the range [−η, 0) were manually set to
zero. Furthermore, an error message is generated if values below −η are encountered,
as this could indicate underlying issues in the algorithm. An additional restriction
was imposed on the Ipopt solver, responsible for computing the values of θi∗: the
parameter bound_relax_factor, the factor used for bounds relaxation, was set to
10−12 (its default value is 10−8).

19

Chapter 4

Computational results

This chapter presents the results of the experimentation conducted to analyze the
performance of the proposed method. The metrics used for evaluation primarily include
the number of iterations required for convergence, the progression of the gap q(xk)
compared to the dual gap q(xk) of the F-W method, and the corresponding values of
the running gaps.

4.1 Experimental setup

The experiments were conducted on the objective function f(x) = ∥x−xp∥22, where xp is
a fixed point generated according to specific criteria. In particular, the study focused on
scenarios where xp is infeasible. This function was chosen due to its simplicity: it is non-
negative, its unconstrained minimum is at xp, and its level sets form concentric circles
centered at xp. These features facilitated precise control over the iteration behavior,
enabling the straightforward identification of potential errors or issues — an especially
advantageous characteristic for a preliminary exploration of the method.

To control the function values during the iterations and at the optimum, the feasible
region was generated within a Euclidean ball of radius 5, and the point xp was randomly
generated with a norm in the interval (5, 7.5). The maximum iterates number was set
to 200 and the required precision was ϵ = 10−8.

Two types of feasible sets were considered: an l2-norm ball centered at the origin
and a polytope defined by randomly generated vertices. The implementation of each
configuration was simplified by the FrankWolfe.jl library, where the abstract type
LinearMinimizationOracle is defined. Specifically, the library provides the struc-
tures LpNormLMO{p}(radius), which implements the LMO for a p-norm ball of radius
radius, and ConvexHullOracle(vertices), which implements the LMO for a polytope
constructed from the vertices provided in the vertices array.

For each feasible set, three types of step sizes were tested: short step, function-
agnostic and line search. These methods are implemented in FrankWolfe.jl via the ab-
stract type LineSearchMethod. Specifically, the library includes Shortstep(L), where
L is the Lipschitz constant of the gradient, Agnostic(), which computes the simple

20

rule γk = 2/(k+2), and Goldenratio(tol). The latter implements the golden-section
search based on [8], where tol represents the precision used to compute the minimum
on the considered segment. The default value of tol is 10−7, which, for the standards
of this work, was found to be too high. Therefore, tol was set to 10−10.

4.2 Performance Evaluation

The first parameter considered in the experiments observations is the problem size.
Although this dimension influenced the absolute execution time of the methods, it did
not significantly affect their comparative performance. This suggests that the rela-
tive efficiency of the methods remains consistent across different problem dimensions.
Furthermore, the execution time is not a focus of this study, so all results presented
correspond to problems with a fixed size of n = 100, allowing for a clearer focus on
other factors.

A more pronounced impact was observed concerning the choice of the stabilization
parameter. This parameter plays a pivotal role in shaping the performance outcomes,
underscoring its importance in the analysis. The details of its influence and the insights
derived are explored in the subsequent sections, highlighting its contribution to the
observed results.

The values displayed in the graphs throughout this chapter will illustrate four quan-
tities as they vary with the iterations. Specifically, Normalized Primal and Running
Primal Gap refer, respectively, to the quantities

p(xk)

max {|f∗|, 1}
,

f̄k − f∗
max {|f∗|, 1}

,

while Normalized FW Gap and Running Dual Gap refer to

q(xk)

max {|f∗|, 1}
,

f∗ − fk

max {|f∗|, 1}
for the vanilla F-W method,

q(xk)

max {|f∗|, 1}
,

f∗ − fk

max {|f∗|, 1}
for the two bundle F-W methods.

We will refer to the vanilla F-W method as FW, to the bundle F-W method introduced
in Section 2.1 as 3BFW and to the bundle F-W method with the model proposed in
Section 2.2 as BFW.

4.2.1 Fixed stabilization parameter

A preliminary phase of research was conducted on a fixed stabilization parameter value.
Although no online tuning was performed of t, excellent results were observed on the
Euclidean ball domain for values of t = 102 or slightly higher. As shown in the instance
in Figure 4.1, for all three types of step sizes BFW produced both primal and dual gaps
equal or smaller than those of FW. Moreover, using line search and short step methods,
the stopping criteria was satisfied in less than half the iterations compared to FW.

21

Short step Line search Function-agnostic
Figure 4.1: Normalized running gaps on Euclidean ball with fixed t = 103.

Not as optimal results were obtained on polytope domain, where the behavior highly
depended on the specific instance. As the number of vertices increases, the three
algorithms tend to follow the same pattern, eventually coinciding. However, generally
the three step size methods lead to significantly distinct behaviors, as shown on the
instance in Figure 4.2.

Short step, t = 10−1 Line search, t = 10−3 Function-agnostic, t = 103

Figure 4.2: Normalized running gaps on a polytope with 7 random vertices.

Short step is the only method for which no instances were found where one between
3BFW and BFW manages to improve the gaps provided by FW, even with significant
variations in the initial value of t. While the primal gap generally aligns, the dual gap
tends to be relatively larger, especially for BFW.

Line search instead leads to highly variable outcomes. Even for the same value of t,
three distinct behaviors of BFW were observed: in some instances, all three algorithms
produce the same output. In others, BFW exhibits a much larger dual gap, despite the
primal being identical to others. Finally, in certain cases both gaps produced by BFW
were higher then the ones of the other methods. In this configuration, 3BFW tends to
perform a lot better better. Generally, its behavior closely mirrors that of FW; however,
in instances where FW stagnates in a continuous oscillation without converging, 3BFW
provides a lower dual gap, like in the instance represented in Figure 4.2.

The only step size strategy to generally outperform FW on polytope domain is the
function-agnostic step size. With an initial value of t = 102, 3BFW, and even more so
BFW, achieve lower dual gaps compared to FW. It should be noted that these values

22

are not directly comparable to those obtained using different step sizes with the same
number of iterations, as the latter lead to faster convergence. Regardless, for instances
where the previous step sizes are too costly to employ, using BFW with a higher number
of iterations seems to be a promising solution.

4.2.2 Tuning of t

As is well known in BM theory, the online tuning of t is crucial. However, for the same
reason, adopting the wrong strategy can make things a lot worse.

For the experimentation we mainly focused on adapting the value of t when a NS
occurred. An additional rule was also tested, in order to keep the norms of dk∗ and ξk

comparable, as discussed in Section 2.1.1. The experimentation was conducted on the
following strategies:

(a) NS: t← min(10t, 108);

(b) NS: t← min(10t, 1012);

(c) NS: t← min(10t, 1012)

SS:

if ∥dk∥
∥zk∥ < 10−1 then t← min(10t, 1012)

if ∥dk∥
∥zk∥ > 10 then t← max(t/10, 10−12)

,

where dk and zk are referred to the notation used in Algorithm 5.
Regarding the Euclidean ball domain, the promising results obtained with a fixed

parameter value were preserved. It should be noted, however, that due to convergence
occurring in only a few iterations and the limited number of NS, parameter tuning
through methods (a) and (b) does not significantly impact the progression of the itera-
tions. Consequently, starting with an initial value of t = 102, the gaps values obtained
with these tuning strategies result equal to the ones produced with a fixed t.

Conversely, improvements were observed with the use of method (c): incorporating
tuning during the SS allows the parameter t to be continuously informed on the distance
of the current iterate from the boundary of the feasible region. For BFW, this resulted
in lower dual gaps, particularly when using function-agnostic step size. Figure 4.3
compares the results on the same instance of the algorithms without tuning and with
the application of method (c). Unfortunately, 3BFW does not result competitive in
this scenario.

Regarding the polytope domain, the tuning methods did not generally lead to 2BFW
and BFW algorithms outperforming FW. However, improvements were observed com-
pared to the use of a fixed t when using short step and line search step sizes. Specifically,
with all three tuning strategies considered, initializing t = 10 or lower the gap progres-
sion of the proposed methods closely resembled that of FW, while in the previous
case, particularly for BFW, the dual gap often remained significantly higher due to the
presence of NSs. Nonetheless, these results are encouraging. For example, Figure 4.4
illustrates an instance where methods (a) and (b) enabled both 2BFW and BFW to

23

Short step Line search Function-agnostic
Figure 4.3: Normalized running gaps on Euclidean ball with starting value t = 102. On the
first row: fixed t value. On the second row: (c) tuning strategy.

achieve a lower dual gap than FW when using a line search step size - a behavior not
observed in the same instance with a fixed t.

Notably, the smaller bound on the value of t used in method (a) effectively miti-
gated the oscillations in the dual gap, justifying the investigation of the two methods
separately.

Fixed t Method (a) Method (b)
Figure 4.4: Normalized primal and dual gaps on polytope domain, line search step size with
different t tuning strategies.

The performance of the BFW and 3BFW algorithms with the function-agnostic
step size remains effective, as they consistently provide lower dual gap values compared
to those achieved by FW. However, on the same instance, the application of the pro-
posed tuning strategies generally leads to a worse performance, resulting in a slower
convergence.

24

Conclusions and Future Work

We have developed a new variant of the vanilla F-W method with a proximal bundle
approach. Its main characteristic is to exploit additional information retrieved during
previous iterations in order to determine a better search direction to use as objective
of the LMO, rather than the bare gradient. This is obtained by developing a piecewise-
linear model of the objective function, that becomes more and more refined as the
iterations increase. The possibility to choose which information are used to build the
model leaves space for numerous variants, two of which were considered in this work.

In order to validate the proposed method and evaluate its performance, the bundle
F-W algorithm was implemented and tested in a controlled setup. The objective was
to start identifying the scenarios in which it performs better and the observed results
are promising. Remarkably, a significant improvement was noted in comparison to the
classical F-W method when applied on a Euclidean ball as the domain. Although the
polytope domain proved to be more challenging, certain findings suggest that a more
in-depth investigation is warranted.

Undoubtedly, extending the experimentation to more complex functions and to
other domains would provide greater clarity regarding the contexts in which the bundle
F-W method performs optimally. There is considerable room for exploration in terms
of potential tuning methods for the stabilization parameter. More sophisticated update
rules could be attempted, particularly in distinguishing between NS and SS. It is also
worth investigating whether introducing a counter to mitigate the variation of the
parameter value might prove to be a useful technique, allowing the method to adapt.

A theoretical study about convergence would be highly beneficial in this regard.
This not only would serve to unequivocally validate the method, but it would proba-
bly yield inequalities that constrain the possible values of the stabilization parameter,
potentially providing direct methods for its update.

Another potential area for development concerns the model employed in the bundle
subproblem. In this work, the proposed model uses proximal stabilization, but other
techniques could be employed. One example is the trust region stabilization, whose
theoretical framework is introduced in Appendix B.

In conclusion, this work has presented an exploratory research on the proposed
bundle F-W method, demonstrating the potential it holds. The results obtained paves
the way for future research. A deeper exploration will be key to fully establishing the
method’s efficacy and broadening its impact.

25

Appendix A

Implemented code

bundle_grad!()

1 function bundle_grad!(storage, x, h::Int, trajectory_arr, t, alpha;
use_vertices=true,tol=1)↪→

2 #first iteration
3 if isempty(trajectory_arr)
4 gradient!(storage, x)
5 push!(alpha, 0)
6

7 #bundle subproblem
8 else
9 #extraction of past h iterates and h vertices (if the case)

10 h = min(length(trajectory_arr),h)
11 h_iters = trajectory_arr[end-h+1:end]
12 bundle_x = getindex.(h_iters,1)
13 if use_vertices
14 bundle_v = getindex.(h_iters,2)
15 end
16 #computation of gradients and linear errors
17 bundle_grad = []
18 bundle_alpha = []
19 obj = objective(x)
20 for i in 1:h
21 push!(bundle_grad, 2 * (bundle_x[i] - xp))
22 push!(bundle_alpha, obj - objective(bundle_x[i]) - dot(bundle_grad[end],

x-bundle_x[i]))↪→

23 if use_vertices
24 push!(bundle_grad, 2 * (bundle_v[i] - xp))
25 push!(bundle_alpha, obj - objective(bundle_v[i]) - dot(bundle_grad[end],

x-bundle_v[i]))↪→

26 end
27 end
28 push!(bundle_grad, 2 * (x - xp)) # adding gradient(x) at the end
29 push!(bundle_alpha, 0)
30 bundle_dim = length(bundle_grad)
31 tolerance = 1e-12 * tol
32 #check on negative values of alpha

26

33 for i in 1:bundle_dim
34 if bundle_alpha[i] < -tolerance # small negative tolerance
35 @warn("[$h-bundle] alpha[$i]: $(bundle_alpha[i]) < 0 (violates tolerance

-$tolerance)")↪→

36 elseif bundle_alpha[i] < 0
37 bundle_alpha[i] = 0 # clip small negatives to zero
38 end
39 end
40

41 #Gram matrix
42 G = zeros(bundle_dim,bundle_dim)
43 for i in 1:bundle_dim
44 for j in 1:bundle_dim
45 G[i,j] = dot(bundle_grad[i], bundle_grad[j])
46 if i != j
47 G[j,i] = G[i,j]
48 end
49 end
50 end
51

52 #bundle model
53 model = Model(Ipopt.Optimizer)
54 set_optimizer_attribute(model, "bound_relax_factor", 1e-12)
55 set_silent(model)
56 @variable(model, theta[1:bundle_dim] .>= 0)
57 @constraint(model, sum(theta) == 1)
58 @objective(model, Min, dot(bundle_alpha,theta) + 0.5*(t[end])*dot(theta, G *

theta))↪→

59 optimize!(model)
60 Theta = value.(theta) #solutions
61

62 #check on negative values of theta
63 for i in 1:bundle_dim
64 if Theta[i] < -tolerance # small negative tolerance
65 @warn("[$h-bundle] theta[$i]: $(Theta[i]) < 0 (violates tolerance

$tolerance)")↪→

66 elseif Theta[i] < 0
67 Theta[i] = 0 # Clip small negatives to zero
68 end
69 end
70 if sum(Theta) < 1-tolerance || sum(Theta) > 1+tolerance
71 @warn("[$h-bundle] theta does not sum up to 1: $(sum(Theta)) (tolerance=

$tolerance)")↪→

72 end
73

74 #store values of alpha
75 push!(alpha, sum(bundle_alpha[i] * Theta[i] for i in 1:bundle_dim))
76

77 #final direction
78 z = sum(bundle_grad[i] * Theta[i] for i in 1:bundle_dim)
79 @. storage = z
80 end
81 return nothing

27

Appendix B

Trust region stabilization

A very intuitive approach for stabilization is to constrain the iterate to a Trust Region
(TR), by solving the stabilized MP

xi+1 ∈ argmin {f̌ i(x) | ∥x− xi∥ ≤ δi}, (B.1)

where δi is the stabilization parameter, that regulate the radius of the trust region. Usu-
ally the infinity norm is used, because rewriting explicitly the model f̌ i, the MP (B.1)
results being an LP.

In order to update xi and δi correctly, rules need to be defined. For the stabilization
parameters, a boundedness condition 0 < δ ≤ δi ≤ δ <∞ is sufficient. For the stability
centers instead, we consider the condition

f(xi+1) ≤ f(xi) +m(f̌ i(xi+1)− f(xi)) ≡ ∆f i ≤ m∆i (B.2)

where m ∈ (0, 1) is fixed, ∆f i := f(xi+1) − f(xi) and ∆i := f̌ i(xi+1) − f(xi) ≤ 0.
If ∆i = 0, then xi is optimal for the MP. The condition (B.2) regulate the choice of
xi+1: if the inequality holds, it is reasonable to set xi+1 = xi+1, which is usually called
Serious Step (SS). Alternatively, the stability center is kept unchanged, i.e. xi+1 = xi,
which is called Null Step (NS). This results in {f(xi)} being a decreasing sequence.

TR dual problem

Shen and Gao examined the TR Lagrange dual problem in [9], making the assumption
that the norm in (B.1) is induced by a scalar product. However, it is possible to obtain
a higher level of generalization by introducing the following operator.

Definition 11 (Conjugate function). Given f : Rn → R, the conjugate function f∗ :
Rn→R is defined as

f∗(y) = sup
x∈domf

(⟨y, x⟩ − f(x)).

28

The domain of the conjugate function consists of all y ∈ Rn for which the supremum is
finite, i.e. for which the difference ⟨y, x⟩ − f(x) is upper bounded. The function f∗ is
always convex, since it is the point-wise supremum of a family of convex functions of
y, and this is true whether or not f is convex.

The conjugate operator allows to generalize Lagrangian duality as it follows. Given
two functions f1(x) and f2(x) closed convex such that the intersection of their domains
is nonempty, the Fenchel’s duality property holds:

inf
x
{f1(x) + f2(x)} = inf

z
{f∗

1 (z) + f∗
2 (−z)}. (B.3)

Thus, when considering the Generalized BM (GBM) [6, para. 3.4], i.e. the MP

di ∈ argmin {f i(x+ d) +Dµi(d)}, (B.4)

where Dµi(d) is referred to as generalized stabilization term, it is possible to immediately
obtain its Fenchel’s dual

zi ∈ argmin {(f i)∗(z) + ⟨z, x⟩+D∗
µi(−z)}. (B.5)

In particular, when f = f̌

(f̌ i)∗(z) = min {
∑
j∈Ji

αjθj |
∑
j∈Ji

zjθj = z, θ ∈ Θ}.

In this way, a proper choice of Dµ allows to derive the Fenchel’s dual for the TR MP
(B.1):

Dδ(d) = 1{d : ∥d∥≤δ} D∗
δ (z) = δ∥z∥∗,

where

1C(d) =

{
0 if d ∈ C

∞ if d /∈ C

is the indicator function of the set C and ∥.∥∗ is the dual norm of ∥.∥, i.e. ∥z∥∗ =
sup {⟨z, x⟩ | ∥x∥ ≤ 1}. Note also that Dµ(d) =

µ
2∥d∥

2
2 and D∗

µ(v) =
1
2µ∥z∥

2
2 immediately

reproduces the PBM Lagrange dual problem (1.21), paying attention to switch from
αj to αj since the model is translated.

29

Bibliography

[1] Gábor Braun et al. “Conditional Gradient Methods”. In: 2022. url: https://
api.semanticscholar.org/CorpusID:254018302.

[2] A.M. Bagirov, Napsu Karmitsa, and Marko Mäkelä. Introduction to Nonsmooth
Optimization: Theory, Practice and Software. Springer Cham, Aug. 2014, pp. 299–
308. isbn: 978-3-319-08113-7. doi: 10.1007/978-3-319-08114-4.

[3] Marguerite Frank and Philip Wolfe. “An algorithm for quadratic programming”.
In: Naval Research Logistics Quarterly 3 (1956), pp. 95–110. url: https://api.
semanticscholar.org/CorpusID:122654717.

[4] Sebastian Pokutta. “The Frank-Wolfe Algorithm: A Short Introduction”. In: Jahres-
bericht der Deutschen Mathematiker-Vereinigung 126.1 (Mar. 2024), pp. 3–35.
issn: 1869-7135. doi: 10.1365/s13291-023-00275-x. url: https://doi.org/
10.1365/s13291-023-00275-x.

[5] Martin Jaggi. “Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimiza-
tion”. In: Proceedings of the 30th International Conference on Machine Learning.
Ed. by Sanjoy Dasgupta and David McAllester. Vol. 28. Proceedings of Machine
Learning Research 1. Atlanta, Georgia, USA: PMLR, June 2013, pp. 427–435.
url: https://proceedings.mlr.press/v28/jaggi13.html.

[6] Antonio Frangioni. Standard Bundle Methods: Untrusted Models and Duality.
Tech. rep. Dipartimento di Informatica, Università di Pisa, 2019.

[7] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004.

[8] Cyrille W. Combettes and Sebastian Pokutta. Boosting Frank-Wolfe by Chasing
Gradients. 2020. arXiv: 2003.06369 [math.OC]. url: https://arxiv.org/abs/
2003.06369.

[9] Jie Shen and Ya-Li Gao. “Research on the Dual Problem of Trust Region Bundle
Method”. In: Journal of Advances in Mathematics and Computer Science 22.3
(May 2017), pp. 1–6. doi: 10.9734/BJMCS/2017/33880.

[10] E.S. Levitin and B.T. Polyak. “Constrained minimization methods”. In: USSR
Computational Mathematics and Mathematical Physics 6.5 (1966), pp. 1–50. issn:
0041-5553. doi: https://doi.org/10.1016/0041- 5553(66)90114- 5. url:
https://www.sciencedirect.com/science/article/pii/0041555366901145.

30

https://api.semanticscholar.org/CorpusID:254018302
https://api.semanticscholar.org/CorpusID:254018302
https://doi.org/10.1007/978-3-319-08114-4
https://api.semanticscholar.org/CorpusID:122654717
https://api.semanticscholar.org/CorpusID:122654717
https://doi.org/10.1365/s13291-023-00275-x
https://doi.org/10.1365/s13291-023-00275-x
https://doi.org/10.1365/s13291-023-00275-x
https://proceedings.mlr.press/v28/jaggi13.html
https://arxiv.org/abs/2003.06369
https://arxiv.org/abs/2003.06369
https://arxiv.org/abs/2003.06369
https://doi.org/10.9734/BJMCS/2017/33880
https://doi.org/https://doi.org/10.1016/0041-5553(66)90114-5
https://www.sciencedirect.com/science/article/pii/0041555366901145

	Introduction
	Contextual Framework
	Preliminaries
	Frank-Wolfe algorithms
	Indicators of performance

	Bundle Methods
	Stabilization

	Duality
	PBM dual problem

	Bundle-Enhanced Frank-Wolfe Method
	Method Overview
	Stabilization parameter tuning
	Convergence measure
	Dual problem solution

	Generalization of the Model
	Bundle management

	Method Implementation
	Bundle subproblem
	Stopping criteria
	Numerical errors management

	Computational results
	Experimental setup
	Performance Evaluation
	Fixed stabilization parameter
	Tuning of t

	Implemented code
	Trust region stabilization

